首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
在飞机部件装配过程中,CFRP/钛合金叠层结构的连接十分常见,而由于两种材料迥然不同的材料性能,导致制孔后存在孔径阶差,严重影响了CFRP/钛合金结构的疲劳强度。本文开展了低频轴向振动辅助钻削的正交实验,分析了低频振动辅助钻削工艺参数与切削力和切屑形态的关系以及工艺参数对CFRP/钛合金孔径阶差的影响。结果表明,由于低频振动辅助钻削刀具的周期性进给,钛合金切屑由连续长切屑变为扇形短屑,减少了对CFRP的扩孔效应,钻削区域切削热降低,平均轴向力降低;另外,振幅和进给量对孔径阶差的影响较为显著,而主轴转速的影响较小,且孔径阶差随着振幅的增大先减小后增大,随着进给量的增大而增大。通过试验验证和分析,确定面向孔径控制的最优工艺参数组合方案:主轴转速为600 r/min、进给量为0.02 mm/r、振幅为150 μm。  相似文献   

2.
文摘根据CFRP钻削过程中缺陷的产生机理,用声发射传感器采集钻削过程中的声发射信号有效值电压(RMS)。分析了在不同钻削参数下的RMS,对孔的入口处撕裂与出口处撕裂对应的RMS进行识别。结果表明:在钻削过程中,入口处和出口处撕裂会引起RMS的突变,能够有效的进行识别;主轴转速一定时,RMS随着进给量的增大而增大;进给量一定时,RMS随着主轴转速的增大而增大。  相似文献   

3.
采用自主磨制的阶梯钻对钛合金进行钻削实验,并与普通麻花钻进行对比。分析了不同加工参数下的钻削力、切屑形态、孔径、孔壁表面粗糙度以及孔出入口毛刺。实验结果表明:钻削力随着主轴转速的增大而减小,随着进给量的增大而增大。相比普通麻花钻,阶梯钻产生的钻削力更小,切屑尺寸更小,排出顺畅,孔径值接近于钻头直径,孔壁表面粗糙度值更小,孔出入口毛刺少。  相似文献   

4.
李远霄  焦锋  张世杰  张顺  王雪  童景琳 《航空学报》2021,42(10):524802-524802
针对碳纤维增强复合材料(CFRP)和钛合金叠层结构在传统钻削过程中切削温度高、加工质量差等问题,基于低频振动钻削和高频(超声)振动钻削的优势,提出了高低频复合振动钻削的加工方法。采用自主研制的高低频复合振动钻削装置,对CFRP/钛合金叠层结构进行了制孔试验,对比研究了普通钻削、超声钻削、低频振动钻削和高低频复合振动钻削4种方式下的切削力、钛合金切屑形貌、切削温度和CFRP孔加工质量。结果表明:4种加工方式中,高低频复合振动钻削的轴向力波动相对较大,切削温度显著降低,产生的钛合金切屑呈不连续扇形且整体尺寸最小,CFRP孔出入口及孔壁的损伤程度最低,显著提高了加工质量,为复合材料叠层结构一体化制孔加工提供了指导意义。  相似文献   

5.
旋转超声钻削碳纤维复合材料钻削力和扭矩的研究   总被引:1,自引:0,他引:1  
针对碳纤维增强树脂基复合材料(CFRP)加工过程中的问题,对金刚石套料钻旋转超声钻削CFRP-T700型复合材料展开了研究。研究发现,钻削力随主轴转速的增加具有减小的趋势,而扭矩则随着主轴转速的增加,呈现增大的趋势;与传统加工相比,旋转超声振动钻削可降低切削力及扭矩达56.6%和39.1%,有效抑制加工缺陷的产生。初步建立了切削力和扭矩之间的数学模型,并通过试验对切削力和扭矩之间的比例常数k加以验证。研究结果表明,旋转超声钻削CFRP在降低切削力和扭矩方面有较大优势。  相似文献   

6.
采用硬质合金麻花钻对CFRP-TC4叠层板进行钻削试验,分析了钛合金层加工参数对钻削力、钻削温度和加工孔质量的影响。结果表明:随着转速的增加,钛合金层的轴向力逐渐减小;随着钛合金层进给量的增加,钛合金层与CFRP层的轴向力之比逐渐增加。运用指数公式模型对钛合金层轴向力实验结果进行回归分析,得到轴向力与转速以及进给量之间的关系式:F_z=2 088n~(-0.1222)·f_r~(0.2016),并对该方程进行了检验验证,误差均小于10%;在钛合金层进给量不变时,随着钛合金层转速的增加,CFRP的最大烧伤环直径和层间最高温度逐渐增加。  相似文献   

7.
因CFRP、TC4材料的物理性能差异较大,导致CFRP/TC4叠层构件切削性能匹配性较差,钻削过程中存在界面损伤、CFRP孔壁损伤难以调控的问题。针对上述问题,本文采用变参数啄式钻削工艺、变参数钻削工艺和恒参数钻削工艺对CFRP/TC4叠层结构进行了制孔实验,并对不同工艺条件下的轴向力、界面质量、TC4的切屑形态、CFRP层孔壁质量进行了对比分析。结果表明:相对于其他两种钻削工艺,在变参数啄式钻削工艺条件下,TC4材料层轴向力明显较高,产生短带状和短螺旋状切屑;CFRP层出口和入口处的孔径更接近于名义孔径,孔壁缺陷较少,表面粗糙度相对较小。  相似文献   

8.
基于ANFIS的CFRP轴向钻削力预测   总被引:1,自引:0,他引:1  
本文基于CFRP轴向钻削力试验研究,获得ANFIS样本数据通过对ANFIS的训练,建立钻头转速、进给量与轴向钻削力之间的映射关系,并进行验证试验,结果表明了该预测方法的有效性  相似文献   

9.
针对碳/环氧复合材料进行了钻孔技术、尤其是高速钻孔技术的研究,紧密结合工程应用的现状,对钻削力及其影响因素进行了较为全面和系统的研究。结果表明:进给量是影响钻削力的主导因素,进给量越大,钻削力越大;进给量越小,钻削力越小。转速、钻尖直径及材料厚度对钻削力也有一定影响,但控制进给量是控制钻削力的最有效措施。  相似文献   

10.
利用热像仪对碳/环氧复合材料高速钻孔时的钻削温度及温度场分布进行了系统的试验研究。实验结果显示,钻削热主要是由刀具后刀面与已加工表面之间的摩擦产生的。转速越高,钻削温度赵高;进给量越大,钻削温度越低,但钻削温度一般不超过环氧树脂的玻璃化转变温度。  相似文献   

11.
树脂基纤维复合材料钻削研究进展   总被引:1,自引:1,他引:0  
主要介绍了树脂基纤维复合材料钻削过程中的钻削力、钻削温度、加工表面质量等钻削性能及材料去除机理、缺陷形成机理、刀具磨损机理等钻削机理方面的研究现状;阐述了树脂基纤维复合材料钻削工艺及钻头改进方面的最新研究进展,并对树脂基纤维复合材料钻削加工技术的下一步研究重点进行了展望。  相似文献   

12.
采用研制的椎4 mm 金刚石磨料刀具,研究SiCp / Al 复合材料磨削制孔过程中工艺参数对轴向力和
孔质量的影响规律。结果表明:刀具转速高于6 000 r/ min、进给速度为5 mm/ min 时,可以获得较好的制孔质量。
  相似文献   

13.
碳纤维(CFRP)作为一种先进的增强复合材料在机械工程中应用广泛,但成型构件的制孔技术却始终制约着其应用和发展。通过对乘员座椅中的碳纤维复合材料椅盆钻孔时的技术问题、加工工艺等进行归纳和总结,摸索出适合碳纤维复合材料椅盆钻孔的工艺方法,并在相关刀具材料、几何形状及角度、工艺参数等方面提出了建议。  相似文献   

14.
碳纤维增强复合材料与钛合金钻孔技术研究进展   总被引:1,自引:0,他引:1  
随着中国提出“中国制造2025”发展战略,以及数字化自动装配技术的广泛应用,对于钛合金、碳纤维增强复合材料(carbon fiber reinforced plastics,CFRP)的钻孔加工提出更高的要求.从钛合金、碳纤维增强复合材料的钻孔切削加工特性出发,对传统钻孔加工中,在孔加工质量、钻孔刀具两方面近些年来一些研究成果进行总结,简述了碳纤维增强复合材料、钛合金的钻孔技术研究状况,并指出未来研究的重点与关注点,将对这两种材料实际钻孔加工具有指导借鉴意义,提高航空产品制造及装配效率.  相似文献   

15.
碳纤维增强复合材料(CFRP)和钛合金(TC4)叠层结构在航空航天领域应用广泛。钻削制孔是保障CFRP与TC4连接的最常见方式。本文为探究CFRP/TC4叠层结构的钻削机理,对CFRP、TC4分别设置材料本构模型和失效准则,建立了不同钻削顺序下的CFRP/TC4叠层结构钻削仿真模型,对不同叠层顺序下的材料去除过程、两相材料和界面损伤形成机制进行了研究。开展了CFRP/TC4叠层结果的钻削实验,采集了钻削轴向力和钻削缺陷,并验证了模型的正确性。本研究可望为CFRP/TC4叠层结构制孔技术研究提供参考。  相似文献   

16.
CFRP/TC4叠层板的钻削实验   总被引:1,自引:1,他引:0  
采用硬质合金麻花钻对碳纤维复合材料-钛合金叠层板进行钻削试验,分析了钛合金层加工参数对刀具磨损的影响和刀具磨损机制。刀具磨损对孔入口处最大撕裂长度的影响。结果表明:磨损的主要区域是横刃和后刀面,前刀面磨损不明显。钛合金层的低转速和低进给量可以降低刀具磨损;此外随着钻孔数的增加,钛合金层转速越低、进给量越大碳纤维复合材料孔入口处孔质量更好。  相似文献   

17.
为了提高C/E复合材料构件制孔加工质量,以C/E复合材料为研究对象,提出"以磨代钻"制孔新工艺,并研制了电镀金刚石刀具.与传统硬质合金刀具钻孔工艺进行对比试验,结果表明:金刚石刀具钻削轴向力降低30%-50%、刀具耐用度提高3-5倍、缺陷显著减少,更适合C/E复合材料钻孔加工.  相似文献   

18.
CFRP/钛合金叠层材料制孔技术的现状与展望   总被引:3,自引:2,他引:1  
综述了近年来国内外对CFRP/钛合金叠层材料制孔技术的研究进展,重点介绍了传统方法钻削CFRP/钛合金叠层材料过程中轴向力和扭矩、钻削温度的测量方法,轴向力和扭矩的变化规律,以及刀具磨损、加工损伤与钻削工艺的关系;对螺旋铣孔、低频振动钻孔和超声辅助振动钻孔的实现方法、运动特点和加工质量进行了分析总结,并对CFRP/钛合金叠层材料制孔技术的应用和研究动向进行了探讨。  相似文献   

19.
《中国航空学报》2019,32(9):2211-2221
Carbon fiber reinforced plastic and titanium alloy (CFRP/Ti) stacks have been widely used as aerospace structures because of their excellent combination of physical properties. Interface damage caused by interface gaps, significantly different from that of metal/metal stacks, is a common problem in the through-hole drilling of CFRP/Ti stacks with low stiffness. In this study, a force–deformation coupling model was developed to further examine the formation mechanism and the control method of interface damage. Firstly, the coupling model was built considering the interaction between the thrust force and the deformation. To solve this model, a numerical method was proposed in which specific cutting coefficients were calibrated using only the thrust force of rigid stacks. Secondly, drilling experiments were performed with different feed rates and bending stiffness. Experimental results indicate that interface damage mainly includes interlayer chips and surface damage of CFRP layers. The surface damage, which is irreparable, is caused by the rotary extension of metal chips along the interlayer gap. Thirdly, variations of the interface gap were calculated with the coupling model that had been verified by measured thrust forces. The damage area was found to have a linear dependence relation with the interlayer gap. However, in conditions of large gap sizes, the interface damage areas increased with the interlayer gap at high feed rates, while decreasing slightly at low feed rates. This phenomenon was satisfactorily explained by the presented model. Finally, a method was proposed to determine the appropriate pressure exceeding which no interlayer damage will occur. Additional drilling experiments proved the method effective. This study leads to further understanding of the forming mechanism of interlayer damage and of selecting appropriate parameters in drilling low-stiffness composite/metal stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号