首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
汤明杰  杨涓  冯冰冰  金逸舟  罗立涛 《推进技术》2015,36(11):1741-1747
为满足小型航天器的微推进需求,开展了微推力电子回旋共振(ECR)离子推力器的计算研究。实现该推力器的关键是ECR等离子体源合理的磁场和电场分布数值计算,从而使电子在穿过ECR谐振区时能够获得最大能量。为此以双环形永磁材料结构作为磁路,分别以直线形、环形和盘形微波耦合天线产生微波电磁场,同时改变等离子体源特征长度,利用有限元软件计算并分析ECR等离子体源内磁场和微波电场的分布规律以及电子在ECR区的获能规律。结果以微波输入功率5W、频率4.2GHz为例,发现环形耦合天线与较短等离子体源特征长度的结构组合可使电子在ECR区的获能指标达到最大且分布最佳。  相似文献   

2.
梁雪  杨涓  王雲民 《推进技术》2014,35(2):276-281
为了研究电子回旋共振中和器内静磁场和微波电磁场的分布规律,设计合理的磁路结构以形成电子回旋共振区,并使微波强电场区与电子回旋共振区重合,采用有限元分析软件对中和器内的静磁场和微波电磁场进行了数值计算。计算结果表明:永磁体及磁轭的尺寸均影响电子回旋共振区的分布;天线伸入长度越长,微波电场越强。微波频率为4.2GHz时,六块相同的长12mm,宽8mm,高5mm的条形永磁铁与磁轭组成的磁路结构,可以产生合理的电子回旋共振区。L型天线伸入长度为5mm时微波强电场区可与电子回旋共振区重合。  相似文献   

3.
微波等离子推力器(MPT)谐振腔只有在谐振状态下,微波能量才能被高效地用于加热工质产生推力。利用标量网络分析仪,采用微波无源器件回波损耗的测试方法对MPT谐振腔进行了精确地调谐,分析微波能量的吸收效率及谐振频率带宽,研究腔体的尺寸,微波耦合探针位置以及腔内的隔板材料等在同一谐振频率条件下的匹配性。调试结果可为腔体设计与提高系统效率提供参考。  相似文献   

4.
电子回旋共振等离子体推力器(ECRPT)是一种高比冲、高效率且结构简单的新型电磁式推力器。为了研究推力器的放电原理和工作机制,采用漂移-扩散流体模拟方法,仿真模拟了微波等离子体放电过程。仿真结果表明,电子数密度达到10~(16)~10~(17)m~(-3)数量级,氙气的电子数密度比氩气高50%;电子数密度、碰撞功率损耗均随着计算域内压强的增大而增大,电子温度随压强的增大而减小;电子数密度、碰撞功率损耗随着入射微波功率的增大而增大。在未来ECRPT的实际应用中,可以通过使用氙气,适当增大推力器腔内压强以及入射微波功率,使其具有最佳的推力、比冲和工作效率。  相似文献   

5.
为提高电子回旋共振离子推力器(ECRIT)的推力,扩展其应用领域,从制约离子源电离度的电子加热机制出发,研究螺旋慢波条件下ECR离子源的电子加热机制,并与传统耦合天线的加热机制进行对比,得到了螺旋慢波的加热特点。基于螺旋天线的色散方程,采用有限元方法,计算并分析不同结构参数下离子源放电室内静磁场、微波电场和ECR区电子获能指标的分布规律,最终获得螺旋慢波加热的新型ECR离子源结构。计算结果表明,螺旋慢波条件下,电子加热范围得到显著拓宽,更有利于离子源电离度的提高。在输出频率4.2GHz、输出微波功率30W和给定离子源腔体结构条件下,以最宽电子加热范围为目标,计算得到离子源最佳的螺旋慢波耦合天线和磁路结构,此时螺旋角为7°,磁环位置为a=10mm,b=20mm。  相似文献   

6.
微波霍尔推力器是双极霍尔推力器的一种形式,其电离源中的圆柱谐振腔是一个关键件,它承担着微波能量的传输并激发表面波等离子体的重要作用。正确选择其结构和谐振模态是构建微波霍尔推力器的重要基础。为此,针对不同结构、不同谐振模态的微波谐振腔进行结构参数计算分析和电磁场分布规律数值模拟,从中选取可以和霍尔推力器SPT70加速通道相匹配的腔体结构。计算分析和数值模拟结果表明2.45GHz谐振于TM011模的圆柱谐振腔和SPT70加速通道有合适的匹配关系。  相似文献   

7.
同轴型微波等离子推力器磁场效应   总被引:1,自引:1,他引:0       下载免费PDF全文
在2.45 GHz同轴型微波等离子体推力器中加入磁场可以提高推力器的性能。这是由于磁场的存在,在推力器启动阶段会形成电子回旋共振区;稳定工作时,等离子体获得的焦尔热比没有磁场时高,这些都增加了等离子体吸收的微波能量。以氩气为工质,对外加磁场微波等离子推力器进行了实验研究,结果表明,推力器可以达到较高的耦合效率。对等离子体羽流的诊断则表明,外加磁场提高了推力器谐振腔内工质气体的电离度。  相似文献   

8.
为了分析射频离子推力器热特性,建立了射频离子推力器整体热模型,基于二维流体模型,对11cm射频离子推力器开展了放电室等离子体仿真,获得了电子温度、电势分布等关键参数;以等离子体仿真结果和实测束电流为输入,获得了各热源的热通量;通过有限元计算获得了关键部组件的温度分布,与实验结果进行了对比分析。研究结果显示:放电室内电子温度约为3.6eV~3.9eV,等离子体电势最高20V,发热损耗主要来自带电粒子轰击放电室壁面和栅极造成的能量沉积、激发原子的热辐射以及射频线圈自身的发热损耗,温度仿真与实测结果一致性良好,最大误差7%,仿真得到的温度分布可以作为输入参数进一步研究栅极受热形变及对束流的影响。  相似文献   

9.
10cm离子推力器放电室性能优化研究   总被引:2,自引:2,他引:0       下载免费PDF全文
要实现离子推力器较高的效率和比冲等综合性能指标,优化的放电室性能是其首要的前提条件。为了获得10cm离子推力器优化的放电室性能,在放电室初始设计方案基础上,通过对工作参数和结构参数的不同组合试验,开展了性能优化研究,采用的主要手段是关键特征尺寸调节、流率调节和磁场参数的调节。试验获得了不同参数组合的性能变化趋势,得出了优化的放电室结构参数和工作参数。优化后的离子推力器综合性能试验结果表明,在推力15.6m N、比冲3100s的设计工况下放电损耗约为227W/A,放电室工质利用率为91%。  相似文献   

10.
为了分析射频离子推力器热特性,建立了射频离子推力器整体热模型,基于二维流体模型,对11cm射频离子推力器开展了放电室等离子体仿真,获得了电子温度、电势分布等关键参数;以等离子体仿真结果和实测束电流为输入,获得了各热源的热通量;通过有限元计算获得了关键部组件的温度分布,与实验结果进行了对比分析。研究结果显示:放电室内电子温度约为3.6eV~3.9eV,等离子体电势最高20V,发热损耗主要来自带电粒子轰击放电室壁面和栅极造成的能量沉积、激发原子的热辐射以及射频线圈自身的发热损耗,温度仿真与实测结果一致性良好,最大误差7%,仿真得到的温度分布可以作为输入参数进一步研究栅极受热形变及对束流的影响。  相似文献   

11.
《中国航空学报》2021,34(5):79-92
In this paper, the confinement characteristic of primary electrons in the non-axisymmetric discharge chamber of annular ion thruster is investigated by a three-dimensional (3D) non-self-consistent particle tracking model with Monte Carlo Collision (MCC) method. The results show that: The density of primary electrons upstream of ion optics on cathode axis is about 5–50 times higher than that of the other side, which means that the density of primary electrons is obviously non-axisymmetric. The channel width has a significant effect on the average density and uniformity of primary electrons. The average density can be increased by nearly 1.5 times under the appropriate channel width, meanwhile, the variance of density distribution can be reduced by more than 2 times. This is because that increasing the channel width can improve the average confinement length of primary electrons greatly. Furthermore, there is an infection point in the increase of primary electron average confinement length with the channel width, which caused by the significant change of magnetic field structure. Under the case after the inflection point, primary electron mainly (more than 50%) moves to the channel center, which makes the average confinement length of primary electrons and their number in the discharge chamber increase largely.  相似文献   

12.
微波等离子推力器微波模式的合理选择   总被引:3,自引:3,他引:3  
对矩形波导、圆形波导及同轴线的主模进行了分析计算。结果表明:矩形波导是微波的最佳传输方式,相应的主模TE10波是合理的传输模式,微波的频率为2.45GHz左右时,微波衰减很小。从推力器获取最高效率以及与谐振腔获得很好耦合的角度出发,圆柱谐振腔可作为推力器的“燃烧室”,TM011是谐振腔较好的谐振备选模式。  相似文献   

13.
为了评估稳态等离子体推力器(SPT)羽流对微波造成的衰减和相位变化,使用二维轴对称的PIC-DSMC方法,在空间及室压6mPa的真空舱两种环境下,计算了SPT-100羽流场中的电子分布。在此基础上,通过分析特征频率和计算衰减因子、相位常数,估算了2,4,8,12.5GHz共4个频率微波穿过羽流场时的衰减量和相移。8GHz和12.5GHz微波未发现明显的衰减,相移为10°~120°。2GHz和4GHz微波在喷口附近衰减量范围为10~50dB。仿真结果表明,C波段和S波段在SPT羽流中容易发生衰减,而X波段以上的高频微波衰减量很小,同时这几个波段微波均发生较大相移。真空舱内6mPa背压下对衰减量的预测仅略高于实际飞行情况,但微波相移会有较大误差。  相似文献   

14.
首先分析了影响考夫曼离子推力器放电性能的关键因素,然后按照仿真模型的维度对考夫曼离子推力器放电室数值模拟方法进行了分类综述和优缺点分析,并针对以流体方法为基础的各向异性界面问题进行了分析。在此基础上,概述了零维模型、二维模型和三维模型下针对放电室所取得的数值模拟研究结果。最后对考夫曼离子推力器放电室数值模拟研究进行了总结及展望。  相似文献   

15.
磁场位形和通道尺度会改变霍尔推力器等离子体放电过程,影响推力器的宏观放电特性。为分析磁场和通道宽度对推力器放电性能的影响规律,本文针对霍尔推力器轴对称通道结构和放电物理过程建立2D3V物理模型,采用粒子模拟方法研究了霍尔推力器磁零点磁场位形不同通道宽度的电势、粒子数密度、电子温度、电离速率、比冲及推功比的变化规律,结果表明:在具有磁零点磁场位形下,随着通道宽度增加,通道出口处电势降增加,加速区缩短,离子径向速度减少,壁面腐蚀降低;当磁零点位置在内壁面,推力器通道宽度由14 mm增加到16 mm时,推力器比冲和推功比增大,推力器放电效率提高;当磁零点位置在通道中轴线或外壁面,且通道宽度大于14 mm时,推力器比冲增大,推功比减小,推力器效率下降。  相似文献   

16.
离子推力器放电腔内等离子体流动规律的全粒子模型   总被引:5,自引:5,他引:0  
为了详细描述等离子体在放电腔内的产生、演化过程,建立了放电腔内部等离子体流动的二维轴对称全粒子数值模型。在考虑壁面二次电子发射影响的前提下,模拟得到了稳态后放电腔内电磁场、电子与离子数密度,电流密度等一系列参数分布,且与相关实验数据进行了比较,吻合较好。模型得到了实验中难以观测到的放电腔内等离子体的产生、演化过程以及稳态下的分布规律,合理解释了放电腔工作的基本原理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号