首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了提升自动变桨距螺旋桨电推进系统的整体效率,引入最优功率控制规律:自动变桨距螺旋桨电推进系统可根据飞行工况和推力需求,同时调节桨距角和螺旋桨转速两个变量,最终获得一组桨距角和螺旋桨转速的组合,使得推进系统在满足推力需求的情况下实现最小的功率消耗,最终达成飞行任务剖面内最小能耗控制的目标。为了验证方法的有效性,针对同一电推进系统,分别采用最优功率控制规律和恒速控制规律完成相同的飞行任务剖面,获得了两种控制规律下的螺旋桨推进效率、电动机效率、电推进系统总效率和电推进系统能耗数据。结果证明:相较于恒速控制规律,最优功率控制规律能够有效的提升电推进系统效率并降低能耗,完成相同飞行任务剖面的能耗降低6.3%左右。  相似文献   

2.
多旋翼电动力无人机多工作在零前进比或低前进比状态下,因此螺旋桨静态拉力及其效率,对无人机的载重能力和续航能力影响很大。基于涡流理论,提出了一种适用于多旋翼电动力无人机螺旋桨的设计方法,可以在零前进比或低前进比工作状态下,给出最小能量损失的螺旋桨设计方案。以一款462. 28 mm螺旋桨为例,给定相应工况,利用设计程序得到相应的弦长分布及桨距角分布,使用CATIA软件建立相应螺旋桨的三维模型,通过台架试验进行静态拉力及功率消耗测量,验证了本方法的有效性。  相似文献   

3.
为提高复合式直升机飞行效率,对螺旋桨操纵策略和耦合优化配平计算方法进行了研究。首先,建立了构型适用的飞行动力学模型。然后,将已有的螺旋桨变桨距操纵改为桨距和转速复合操纵策略,采用二次序列规划法进行目标拉力的桨距/转速优化操纵求解;提出了改进的鲸鱼算法与螺旋桨操纵策略耦合求解的配平计算方法。最后,进行了计算及结果分析。研究结果表明:所采用的螺旋桨操纵策略有效地提高了复合式直升机飞行效率,所提出的耦合配平方法解决了由于螺旋桨操纵策略变化给复合式直升机带来的配平问题。  相似文献   

4.
一种高效率螺旋桨设计方法   总被引:8,自引:4,他引:4  
提出了一种高效率螺旋桨设计方法,该方法根据给定的飞行速度、螺旋桨转速、拉力、螺旋桨直径、桨叶数、翼型,能够计算出最大效率螺旋桨的几何特性,包括:桨叶的弦长分布、桨距角分布、效率、拉力系数、扭矩系数、功率系数.分别按爬升状态和巡航状态的工作参数设计了某型飞机的螺旋桨,得到了桨距角和弦长沿径向的分布.对螺旋桨的缩比模型(直径为0.84m)进行了风洞试验,风洞试验结果表明:螺旋桨在巡航状态的效率是83.02%,爬升状态的效率是79.13%.   相似文献   

5.
针对现有高空飞艇螺旋桨推进系统中,采用变桨距技术重量代价大、能源消耗多的问题,设计一种基于离心力的离心锤变桨距机构,分析该机构的工作原理,并利用ADAMS软件进行机构运动学和动力学仿真分析;对离心锤进行参数化建模,建立约束方程后,以桨距优化角为目标函数,对离心锤的空间位置进行优化.结果表明:当外界条件引起螺旋桨转速变化时,该机构可以很好地实现螺旋桨变桨距功能;在现有平台上,48°的离心锤安装角具有最优的变距效果.  相似文献   

6.
一种基于螺旋桨部件特性的螺旋桨建模方法   总被引:3,自引:2,他引:3       下载免费PDF全文
陈怀荣  王曦 《航空动力学报》2017,32(10):2526-2535
通过缩比法,利用螺旋桨通用部件特性获得期望研究的螺旋桨部件特性,提出了飞行速度不为零条件下的螺旋桨数学模型建模算法,同时,借鉴缩比后螺旋桨部件特性、螺旋桨定桨叶角工作性能曲线以及螺旋桨空气动力学原理,分析了静拉力状态下的螺旋桨功率系数、拉力系数、桨叶角、螺旋桨静态推力进距比阈值以及螺旋桨几何设计参数的相互作用关系,提出了静拉力状态下的螺旋桨数学模型建模算法。所述算法与Gas Turbine Simulation Program (GSP)软件仿真数据进行了数字仿真对比验证。结果表明:所提出的螺旋桨建模算法具有有效性,在前进状态下,螺旋桨拉力相对误差最大不超过6.6059×10-6,需求功率相对误差最大不超过5.5098×10-6,效率相对误差最大不超过6.6955×10-6。   相似文献   

7.
针对小型无人机广泛使用的二冲程活塞式航空发动机螺旋桨动力装置,研究了发动机的速度、高度特性及定距螺旋桨的拉力系数、功率系数及效率随前进比变化等问题,建立了二冲程活塞式发动机螺旋桨动力装置模型。动力装置模型应用于无人机非线性飞行仿真平台中,进一步研究了无人机风门-高度、升降舵-速度保持/控制等问题,结果表明动力装置模型合理可行,满足小型无人机飞行控制仿真的要求。  相似文献   

8.
周期变距螺旋桨是在普通螺旋桨中引入自动倾斜器,使其不但能够像普通变距机构一样使螺旋桨叶片同步变距,还可以让转到不同位置的桨叶桨距差动,实现周期变距,从而产生与飞机横轴垂直的力矩.该力矩可以用来弥补舵面操纵效率,也可以与舵面配合对飞机进行直接力控制.  相似文献   

9.
基于S1223翼型建立了平流层螺旋桨3维模型,在螺旋桨上下表面设置等离子体激励器,设计了5种螺旋桨工况下的等离子体控制方案,采用唯象学等离子体体积力模型进行数值仿真,研究了5种工况下不同等离子体控制方案对螺旋桨拉力和效率的影响。结果表明,设计工况下不宜开启等离子体激励器,采用交流激励时等离子体对高转速前进工况下的螺旋桨控制效果不明显,低速重载工况和滑翔工况下螺旋桨拉力和效率增加,低转速抗风工况下螺旋桨拉力大。采用等离子体流动控制技术提高平流层螺旋桨性能是可行的,需要进一步开展大量研究以优化等离子体激励器的布置方案和控制方案,提高等离子体控制效果,以满足低速临近空间飞行器对推进系统的需求。  相似文献   

10.
某型三叶螺旋桨的设计及性能试验   总被引:4,自引:3,他引:1  
项松  佟刚  吴江  赵为平  杨康  王吉 《航空动力学报》2016,31(8):1793-1798
根据飞行速度、需用拉力、螺旋桨转速等参数,设计了某型飞机的三叶螺旋桨,获得了弦长和桨叶角沿着径向的分布.制造了三叶复合材料螺旋桨(直径为1.75m),在螺旋桨试验台上测试了不同转速下螺旋桨的拉力.为了获得螺旋桨的动态性能,制造了螺旋桨的缩比模型(直径为0.96m),在西北工业大学NF-3风洞的三元试验段测试了螺旋桨的气动性能数据,包括:拉力、扭矩、功率、效率.结果表明:螺旋桨最大效率为85.63%,所设计的三叶复合材料螺旋桨适用于螺旋桨需用功率为70kW左右的发动机(比如Rotax912),提出的螺旋桨设计方法具有较好的应用价值.   相似文献   

11.
一种电动飞机电推进系统的能效优化方法   总被引:2,自引:1,他引:1  
王书礼  孙金博  康桂文  马少华 《航空学报》2021,42(3):623942-623942
电动飞机依靠电推进系统为飞机提供所需的动力,而电动飞机蓄电池的能量密度制约了飞机续航能力的提升。在蓄电池能量密度受限的条件下,进行电推进系统能效优化,提高电推进系统效率,降低电推进系统损耗,对增加飞机的续航时间具有重要意义。以某双座可调定桨距螺旋桨电动飞机电推进系统为例,依据飞机的飞行任务剖面搭建了飞机电推进系统在起飞及巡航阶段的系统损耗模型,以可调定桨距螺旋桨桨矩角为优化变量,以飞机完成一次飞行任务剖面能耗最小为目标,提出一种适于可调定桨距螺旋桨电动飞机电推进系统的能效优化方法。为了验证该方法的有效性,搭建样机测试平台,进行了样机试验,试验结果表明:该能效优化方法能够有效提高飞机电推进系统效率,使飞机完成一次飞行任务剖面的系统能耗降低了8%以上。  相似文献   

12.
电动无人机动力系统优化设计及航时评估   总被引:7,自引:3,他引:4  
王刚  胡峪  宋笔锋  谭唱 《航空动力学报》2015,30(8):1834-1840
为提高电动无人机续航性能,针对动力系统进行了优化设计,并提出了相应的航时评估方法.首先采用涡流理论优化设计了小型螺旋桨,再通过实验测试优化选取了与螺旋桨高效率匹配的电动机.同时,考虑到锂离子电池放电倍率及电压降低对放电时间的影响,建立了恒功率条件下电池放电时间计算模型.最后,根据优化得到的动力系统和电池计算模型,推导出有弯度机翼的电动无人机航时公式.某电动飞翼布局无人机飞行试验结果显示,优化得到的动力系统具有较高的效率,测试得到的无人机续航时间与评估得到的理论值误差为12%,在允许误差范围内吻合较好.   相似文献   

13.
张茂权  陈海昕 《航空学报》2021,42(3):625085-625085
小型电动无人机通常采用锂电池、无刷电机和螺旋桨组成能源动力系统,飞行过程中锂电池的实际工作电压发生变化,但飞机的总重量不变,其航程航时的估算方法与传统的燃油飞机有所不同。为了准确评估动力系统对飞机设计的影响,建立了以锂电池为动力的电动飞机推进系统模型,通过与实验数据比较,验证了各部分模型的准确性。利用该动力系统模型,对某款小型电动无人机进行了航程和航时估算,结果表明本文的建模方法准确有效,航程航时估算接近实验数据,可作为小型电动无人机设计的重要参考。  相似文献   

14.
低雷诺数分布式螺旋桨滑流气动影响   总被引:8,自引:2,他引:6  
王科雷  祝小平  周洲  王红波 《航空学报》2016,37(9):2669-2678
以高空长航时(HALE)太阳能无人机(UAVs)研究为背景,采用基于混合网格技术及k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程的多重参考系(MRF)方法,对3种螺旋桨-机翼构型的低雷诺数气动特性进行了高精度准定常数值模拟,在等拉力前提条件下,通过对比机翼气动力系数及表面流场结构特征分析了分布式螺旋桨(DEP)滑流对FX63-137机翼的气动影响。研究表明:螺旋桨滑流影响使得桨后总压及流速显著增大,这是机翼升力增大的主要原因,但同时机翼阻力特性急剧恶化,升阻比反而降低;螺旋桨滑流向机翼边界层内注入丰富湍动能从而抑制流动分离,扩大机翼表面湍流范围及附着流动区域;分布式螺旋桨滑流与低雷诺数机翼表面复杂流动相互作用显著,主要表现为滑流区域边界展向涡结构的产生。  相似文献   

15.
螺旋桨-自由涡轮涡桨发动机稳态/过渡态数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
为实现对涡桨推进系统整体推进性能的数学模型模拟,以螺旋桨/桨扇作为受飞行外流条件影响的推进系统内流部件之一,引入其特性图,用跟随流量方法解决螺旋桨-自由涡轮转子与涡桨发动机燃气发生器的流量平衡、功率平衡,发展了螺旋桨-自由涡轮涡桨发动机内流特性部件法数学模型,实现了对该类涡桨系统稳态/过渡态的数值模拟。对某8MW三轴桨扇发动机的台架转速特性和飞行任务剖面特性的数值模拟结果表明:该数学模型可以较为准确模拟出包含桨叶变动桨距角、攻角等在内的外流螺旋桨/桨扇部件工作点详细参数,和高度、速度、涡轮前温度同时变化的多条件、多变量涡桨发动机的稳态/过渡态推力、推力耗油率等特性.   相似文献   

16.
超轻型电动飞机电动力系统的参数匹配   总被引:11,自引:8,他引:3  
结合某型超轻型电动飞机的设计参数,阐述了电动力系统的布局、系统参数匹配的原则和步骤.提出了电动力系统参数匹配和性能验证的方法.从动力性、经济性、系统质量的角度验证了该系统的可行性.参考飞机的最大平飞速度为175.5km/h,大于设计要求的最大平飞速度170km/h,满足动力性能要求.电动力系统的运行费用为6.8元/h,是相近功率活塞发动机运行费用的1/8.与3种电动飞机相比,参考机型的功质比仍比较高,达0.0842kW/kg,为可接受值.   相似文献   

17.
电动固旋翼无人机动力系统建模与优化设计   总被引:1,自引:1,他引:0  
为解决电动固定翼四旋翼复合布局无人机(eHAV)动力系统设计选择缺乏相应理论方法的问题,提出了一套动力系统的建模和优化设计方法。通过推质比计算提出了动力系统需求,利用螺旋桨和旋翼理论建立了螺旋桨的设计和性能计算模型,通过统计分析和1阶电动机模型建立了无刷直流电动机的计算模型,通过电动机与电池电压、电流之间的关系建立了电池选择方法,在经过电压修正的放电特性经验公式基础上建立了无人机航时计算方法。根据动力系统匹配方法,建立了动力系统优化设计流程。对某电动固旋翼无人机动力系统进行了优化设计和选择,结果表明:所建螺旋桨和旋翼模型计算结果与CFD结果的误差在10%以内,电池放电模型与试验数据的拟合度在0.97以上,飞行测试结果表明所提方法选择的动力系统使得无人机航时测试值与设计值误差小于4%,证明了该方法有较高的准确性和可行性。   相似文献   

18.
分布式电推进飞机电力系统研究综述   总被引:12,自引:6,他引:6  
孔祥浩  张卓然  陆嘉伟  李进才  于立 《航空学报》2018,39(1):21651-021651
继飞机二次能源逐步统一为电能形成多电/全电飞机之后,电推进技术成为飞机动力系统电气化的重要发展方向,有望进一步提高飞机动力系统能量转换效率、降低燃油消耗和排放,代表了航空电气化的高级阶段。飞机电力系统及相关技术是支撑电推进技术发展的重要基础。系统总结了电推进飞机的类型与发展现状,论述了飞机混合动力系统及分布式电推进系统的基本概念、特点与意义。阐述了航空电推进系统的基本结构,比较了适用于分布式电推进系统的电力系统架构,系统分析了实现电推进技术所需的高效高功率密度电机、高效大容量功率变换器和综合热管理等关键技术。小型纯电动飞机正在逐步迈向实用化,而分布式混合电推进技术是中大型飞机电气化的重要方向,仍然需要航空机电和动力系统等交叉融合与创新发展。  相似文献   

19.
电动飞机电推进系统采用高效永磁同步电机作为主驱动,配备矢量控制器。飞机在巡航过程中不可避免地会遭遇突风,影响飞机的稳定飞行。通过建立电动飞机在巡航阶段遭遇突风时的空气动力学模型和电推进系统的动态响应数学模型,并对模型进行求解,给出了突风气象条件下电推进系统速度PI控制参数的设定方法。以某双座电动飞机的电推进系统为研究对象,采用MATLAB仿真和样机地面试验对速度PI控制进行了仿真分析和试验测试,对比了未考虑和考虑突风气象条件下的速度PI控制器的动态特性。仿真和样机试验结果表明:当飞机遭遇突风时,采用考虑突风气象条件的速度PI控制参数可以有效地降低螺旋桨的转速波动范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号