首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 32 毫秒
1.
气热耦合条件下涡轮静叶三维优化   总被引:5,自引:5,他引:0       下载免费PDF全文
为解决涡轮静叶尾缘烧蚀问题并提升气动效率,采用气热耦合优化的方法对该叶片进行优化,优化分为对叶型优化以及对弯叶片优化两部分。优化结果显示,对叶型进行优化时由于叶型变化以及冷气流量增加2.68%导致叶片平均温度降低4.15%,最高温度下降61.7K,气动效率提升0.17%;对弯叶片进行优化时,顶部正弯效果明显,冷气流量增加0.11%,叶片平均温度下降2.4%,最高温度下降10.6K,气动效率提升0.16%。通过分析,对于该径高比较小的叶片,无论是叶型变化还是弯叶片变化,低能流体由端区进入主流导致的端区损失降低和激波损失的降低是导致气动效率提升的主要原因;冷气流量加大以及端区二次流减弱是造成叶片温度场降低的主要原因。  相似文献   

2.
为研究气膜冷却涡轮叶片中叶型与气膜孔参数变化对涡轮静叶性能的影响,利用气膜冷却涡轮多目标优化平台对存在多列气膜孔的静叶进行多目标优化.获得在优化变量允许范围内针对气动效率与传热效果以及高温目标函数的Pareto前沿解集,整体性能得到了提高,不同方案中气动效率最高提升0.35%,叶片表面温度最大下降0.74%,高温函数降低的最大幅值为45.71%.结果表明:气动效率提升的主要原因是后弯角的提升使得叶型和二次流损失下降;接近驻点处前缘气膜孔方向的改变导致的冷气分流是叶片根部和前缘附近压力侧的冷却情况得到改善的主要原因.  相似文献   

3.
大膨胀比跨声速涡轮流动结构及损失的数值研究   总被引:3,自引:1,他引:2       下载免费PDF全文
杨林  曾军  谭洪川  丁朝霞 《推进技术》2014,35(5):632-640
为了揭示跨声速大膨胀比涡轮损失的主要特点和两种不同尾缘冷却方式对损失的影响,以典型大膨胀比跨声速涡轮和跨声速叶栅为研究对象开展了数值研究。研究发现大膨胀比跨声速涡轮的主要损失是叶型损失,占到总损失的65%左右,尾缘激波损失是叶型损失的主要来源。尾缘全劈缝冷气入射通过提高尾缘基压区基压来减少尾缘膨胀波对气流的加速程度,从而降低最高马赫数和激波损失,尾缘压力面劈缝冷气入射通过改变叶片尾缘压力面激波波系结构,使原来的一道激波变成两道或者两道以上的弱激波,从而减少激波损失。两种尾缘冷气方式都有利于降低大膨胀比跨声速涡轮激波损失,但压力面劈缝冷气入射方式效果更为明显。  相似文献   

4.
采用数值方法研究了冷气掺混对高压涡轮气动性能和叶栅通道内部二次流动结构的影响,计算结果表明:冷气流量增加,冷却高压涡轮导叶和转子型面总载荷降低,导叶进、出口马赫数均减小,转子出口相对马赫数在径向0~0.55区域增大而在径向0.55~1.0区域减小.导叶进、出口气流角受冷气流量的变化影响较小.冷气流量由压气机进口流量的4.83%增加至14.49%,转子进口相对气流角在径向0.05~0.95区域增大而出口相对气流角在径向0.6~1.0区域减小,导叶绝热壁面冷却效率先升高后降低而转子绝热壁面冷却效率提高了19.33%.轮毂和机匣封严气呈束状进入转子叶栅通道且腔内封严气流动受旋转轮盘抽吸效应影响较大.   相似文献   

5.
带尾缘劈缝冷气喷射的涡轮叶栅性能实验及计算   总被引:3,自引:1,他引:2       下载免费PDF全文
通过平面叶栅实验和CFD数值计算方法,研究了叶片尾缘全劈缝冷气喷射下涡轮叶栅流场和气动性能。试验和计算发现,在冷气喷射条件下用不同损失系数描述涡轮叶栅性能,结论明显不同,用考虑冷气能量的能量损失系数评价气冷涡轮叶栅性能较为准确和客观。在较小的冷气流量下,劈缝冷气喷射使叶栅能量损失降低,尾缘劈缝冷气喷射可改善近尾迹区域的流动,减小尾迹亏损,降低尾迹掺混损失。尾缘劈缝冷气射流方向偏向叶片某型面,则尾迹损失峰值朝此型面偏移。  相似文献   

6.
为了缩短涡轮气动设计的周期,进一步发掘涡轮叶型的改进潜力,搭建了多级涡轮的翘曲S1流面气动优化平台.该平台具有速度快,周期短的特点.在考虑冷气的前提下,对多级叶片进行多层并行优化,避免了单列优化后叶列间匹配差的缺点,同时克服了多层S1流面的气动效率此消彼长的缺陷.对某型两级高压涡轮进行了气动优化设计,优化后10%,50%,90%叶高的S1流面的考虑冷气的气动效率分别提高了0.569%,0.490%,0.405%;第1级和第2级考虑冷气的气动效率分别提高了0.18%,0.05%;涡轮整体气动效率提高了0.15%;优化效果明显.经过分析可知,优化有效减小第1级导叶的通道横向二次流损失和第1级动叶的激波损失,第2级的原始叶型设计较为合理.下端壁喷射冷气是降低S1流面优化有效性的重要原因.  相似文献   

7.
王宇峰  蔡乐  刘勋  周逊  王仲奇 《推进技术》2019,40(5):996-1004
为进一步探究跨声速涡轮中吸力面切向冷气喷射对叶栅气动性能及气膜冷却效果的影响,以跨声速涡轮叶栅作为研究对象,采用数值模拟方法,通过在叶片吸力面不同位置开设切向冷气喷射槽,进行不同吹风比下的冷气喷射,对跨声速气冷涡轮叶栅的总体性能以及流场细节进行了详细研究。研究结果表明,吸力面切向冷气喷射有利于减小跨声速涡轮叶栅激波损失,叶栅最大马赫数可减小0.104;切向冷气喷射槽位于尾缘内伸激波反射点上游,且吹风比处于0.75~1.00内时,叶栅能量损失最小;吹风比的增大有利于减小甚至消除冷气槽内分离泡,并能够减小唇部激波强度。  相似文献   

8.
以某涡轮叶栅为研究对象,采用试验和数值模拟相结合的方式研究了涡轮叶片不同喷气结构对叶栅性能的影响。对半开缝和对开缝两种尾缘冷气喷射的研究表明:当冷气流量比较小时,有一个总压损失随冷气量增大先增加后减小的趋势:当冷气量较大时,冷气造成的总压损失随冷气增大而减小。在相同条件下,半开缝叶栅出口的总压损失系数小于对开缝叶栅出口的总压损失系数。叶栅出口平均气流角随着喷气比的增大呈减小的趋势,但变化范围很小。  相似文献   

9.
综述了高压涡轮工作叶片的改进设计过程。采用前腔直接进气,以减少冷气在回流过程中的压力损失,保证了前缘冷气和燃气的压比,解决了由于冷气进口压力较低燃气可能倒流的问题。尾缘采用全劈缝,解决了采用半劈缝时在高度为10km,马赫数为2.0的状态(以下简称热1状态)下尾缘叶背温度过高的问题。同时在冷气拐弯处增加了导流片,降低了冷气涡流损失。  相似文献   

10.
无导叶对转涡轮气动设计技术   总被引:2,自引:0,他引:2  
周杨  刘火星  邹正平  李维  曾军 《推进技术》2010,31(6):689-695,756
采用先进的无导叶对转涡轮气动布局是提升航空发动机性能最为有效的措施之一。结合无导叶对转涡轮高压涡轮动叶进出口轴向速度变化较大等特点,采用理论分析等研究了对转涡轮基元速度三角形参数的优化选取方法,并给出了高压涡轮导叶、动叶出口气流角等变化对效率影响的详细变化关系。流量系数小、高压动叶出口气流角大以及高压动叶进出口轴向速度比大是设计满足出功比高效率对转涡轮的关键。而采用Bezier曲线造型的收敛-扩散叶型叶背曲率的控制、尾缘半径的选择、叶型出口面积与几何喉道面积之比等则是设计适合出口马赫数1.5~1.6高性能叶型的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号