首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
熊永亮  杨丹  郜冶  王革 《推进技术》2006,27(6):484-487
1引言当固体火箭发动机工作时,燃烧室受到某种扰动就会产生一定振型的声波。此时推进剂燃烧表面处于声学环境中,周期性的压强振荡和速度振荡必然会引起推进剂燃速的周期振荡。燃烧对声波的响应反过来会使声波强度、频率和振型有所改变。这种耦合关系包括压力耦合和速度耦合。由  相似文献   

2.
为准确预测不同贮存期HTPB复合推进剂燃速对固体火箭发动机内弹道性能影响,文章通过燃烧实验测量了贮存2a、5a、8a和10a发动机推进剂燃速,通过燃烧室—喷管一体化三维流场仿真技术计算了不同贮存期发动机内弹道性能.实验与计算结果表明,贮存时间越长,推进剂燃速越慢,发动机燃烧室内出现压力高峰的时间越滞后,并且压力峰值越下降.  相似文献   

3.
宋连忠 《推进技术》1989,10(6):33-37,71,72
三组元火箭发动机是近几年提出的新概念.本文介绍了三组元推进剂燃烧试验及其结果分析.试验用液氧/丙烷/氢做推进剂在9.78MPa燃烧室压力下完成.试验结果表明,三组元推进剂和三组元发动机概念可行.  相似文献   

4.
崔定军  夏祥兴  李宜敏 《推进技术》1990,11(6):23-28,18,74
针对无喷管发动机的工作特点,采用二维片型装药实验方案,对高燃速含铝丁羟复合推进剂做了相当数量的试验来研究其燃速特性.试验参数的选择应用正交设计法.在此试验的基础上,参照有关的燃烧理论,得出了适合无喷管发动机工作特点的固体推进剂的实际燃速表达式.  相似文献   

5.
李兆民 《推进技术》1987,8(3):47-51,65
本文综述了近年来国外研究端面燃烧固体火箭发动机中药柱的燃速增大特性所取得的最新成果.在一些端面燃烧装药的固体火箭发动机中,平面的燃烧端面往在演变成锥形燃烧面.实验表明:产生这种现象的主要原因是推进剂中可移动组分的迁移,细颗粒在界面高度集中,以及推进剂的应变造成的.文中还介绍了控制燃速增大,避免在燃烧过程中出现瞬态锥面的各种方法及其实验结果.  相似文献   

6.
李兆民 《推进技术》1989,10(6):25-28,71
本文论述了端面燃烧固体火箭发动机的爆炸问题,总结和分析了端面燃烧固体火箭发动机产生爆炸的重要原因.实验表明:在选择端面燃烧装药的初始增面率时,采用木制假药柱和推进剂短药柱构成的装药会给实验结果带来很大的偏差,导致选出不合适的初始增面率,把它应用在相同尺寸的固体推进剂端面燃烧药柱中时,将会引起发动机产生爆炸.  相似文献   

7.
为研究含碳黑推进剂对固体燃料冲压发动机(SFRJ)旋流燃烧特性的影响,以高密度聚乙烯和含碳黑聚乙烯为推进剂,使用直连式实验系统对冲压发动机进行了旋流和无旋工况的实验研究。并根据实验所获的数据进一步计算得到不同工况下SFRJ工作性能参数。结果表明与聚乙烯(PE)固体燃料相比,含5%碳黑的聚乙烯推进剂可以有效提高固体燃料的燃速、特征速度和推力。在旋流工况下,固体燃料冲压发动机补燃室压强和温度也相应提高,燃烧稳定性增强。同时,在对燃烧室构型进行实验研究时发现,固体燃料冲压发动机的燃烧稳定性和燃烧效率会随药柱内径的增大而提高,而发动机平均燃速则会随着药柱内径的增加而降低。  相似文献   

8.
本文提出了一个高压自燃双组元液体火箭发动机稳态燃烧计算模型.文中报告了特种发动机燃烧室压力、混合比、推进剂喷注温度和喷注器结构对燃烧过程影响的计算及分析结果.各种参数影响规律与实际发动机试验结果符合很好.  相似文献   

9.
为了探索冲压发动机用低燃速贫氧推进剂燃气发生器端面燃烧的规律,采用X射线荧屏分析技术对全尺寸燃气发生器端面燃烧规律进行了诊断研究。试验成功采集了燃气发生器药柱燃面随时间的退移图像,图像数据表明低燃速贫氧推进剂药柱沿轴线方向以近似"三维"锥面体进行退移,在45s左右逐渐形成相对稳定的锥顶角68.5°。试验数据还表明,锥面效应一方面引起燃气发生器药柱燃速由1.60mm/s增大到1.80mm/s;另一方面引起装药燃烧室压强由初始平衡压强0.89MPa爬升到最大工作压强1.75MPa。工作结束后喷管喉径固体线性沉积率为2.68μm/s。  相似文献   

10.
为研究不同直径的推进剂液滴碰撞火箭发动机燃烧室壁面后对流场的影响,在FLUENT基础上通过UDF程序加入液滴撞壁模型,对一种双组元自燃推进剂发动机燃烧室内推进剂的蒸发、流动、燃烧过程进行分析计算,得出燃烧室的流场,液滴分布,液滴撞壁后轨迹的变化以及发动机的各项性能参数,符合规律的数值模拟结果,可为发动机的设计和试验提供依据。  相似文献   

11.
本文提出声湍流概念,指出声湍流引起的能量输运会降低经受适当振幅的推进剂的平均燃速,从而解释了不稳定燃烧推进剂平均压力的下降.本文提出的理论与Morita的实验结果在定性上是一致的,而实际发动机计算与实验结果的比较也证实了本文提出理论的正确性.  相似文献   

12.
采用脉冲枪装置,在液体火箭发动机燃烧室中产生燃烧波,对发动机燃烧过程进行人为激励;通过实验参数测量系统,测量激励前后燃烧室的脉动压力和机械振动频率等参数,分析燃烧室脉动压力的振荡衰减率,进行发动机燃烧不稳定性鉴定实验研究.结果表明:该型液体火箭发动机燃烧过程对脉冲扰动是稳定的.  相似文献   

13.
固体火箭发动机旋转对燃速的影响   总被引:6,自引:0,他引:6  
从实验和理论两方面探讨了固体火箭发动机旋转对燃速的影响。对含铝复合推进剂在试片发动机、全尺寸装药发动机工作状态下旋转对燃速的影响进行了研究, 获得了大量实验数据。得到以下几点结论:铝粉含量相同时, 燃速敏感性随铝粉粒度增大而增大;铝粉粒度相同时, 燃速敏感性随铝粉含量增大而增大;高燃速推进剂加速度阀值高, 燃速敏感性小。   相似文献   

14.
刘珍 《推进技术》2002,23(2):126-128
以固体推进剂燃烧公式为基础,采用计算力学中的数值积分及插值法,并利用计算机技术,研究了用燃烧室药柱的实际肉厚,确定固体火箭发动机试验曲线中燃烧时间的新方法,在点火发动机中应用的结果表明,此方法解决了试验曲线数据处理结果散布范围较大的问题,提高了燃速预估的准确性。  相似文献   

15.
膏体推进剂冲压发动机一次燃烧试验   总被引:2,自引:0,他引:2  
针对额定流量和流量调节条件下膏体冲压发动机一次燃烧组织稳定的要求,提出了一种燃面自适应燃烧组织模式,设计了一次燃烧组织试验系统,进行了一次燃烧组织试验。试验结果表明,推进剂输送稳定,点火时序和推进剂输送时机合理,防回火措施有效,燃烧室压强经过调整后能够稳定在设计值附近。燃面自适应燃烧组织模式可以实现燃面的自适应调节,使推进剂输送和燃烧保持平衡,保证发动机的一次燃烧稳定。  相似文献   

16.
陈景蕙  利风祥  季成伍  程留生 《推进技术》1989,10(2):44-47,74,75
用透明窗发动机及高速摄影装置研究过氯酸铵粒度对丁羟复合固体推进剂侵蚀燃烧的影响,得出了不同过氯酸铵粒度推进剂的侵蚀比与气流速度及压力的关系式.结果表明,复合推进剂中过氯酸铵粒度越大,其燃速对气流速度和压力越敏感,即侵蚀越严重;过氯酸铵粒度越大,其侵蚀界限速度越小,即其越易发生侵蚀;每种过氯酸铵粒度的推进剂,其侵蚀界限速度均随压力的增大而减小.  相似文献   

17.
速度比对气-气喷嘴燃烧性能的影响   总被引:6,自引:4,他引:2       下载免费PDF全文
杜正刚  高玉闪  金平  蔡国飙 《推进技术》2009,30(5):551-554,593
为研究应用于全流量补燃循环发动机的气-气喷嘴,开展气氢/气氧为推进剂的同轴剪切喷嘴的热试试验研究。通过测量燃烧室压力和燃烧室壁面温度,研究氢氧速度比变化对燃烧效率和对燃烧室热载荷的影响。结果显示燃烧效率受到速度比和推进剂喷射绝对速度的影响;燃烧室热载荷随速度比增大而增大。气-气喷注器的设计应选择小的氧喷注压降和适合的速度比。  相似文献   

18.
本文阐述了两种复合推进剂(聚氨脂、丁羟)燃烧特性的高速摄影研究方法。通过测定和计算,得出了侵蚀比与中心气流速度系数及压力的关系式。结果表明,燃速低的推进剂比燃速高的推进剂对中心气流速度和压力更敏感,即侵燃更严重。两种推进剂的侵蚀界限速度都随压力的上升而下降。在相同压力下,燃速低的推进剂的界限速度值比燃速高的推进剂更容易发生侵燃。  相似文献   

19.
互击式喷嘴燃烧室燃烧效率实验   总被引:7,自引:4,他引:3  
为了获得凝胶推进剂火箭发动机高效燃烧室的设计参数,依据推进剂特性,设计了7种不同结构的燃烧室,通过实验手段,研究了燃烧室特征长度、喷嘴孔径和推进剂物性等参数对燃烧效率的影响。结果表明:增大燃烧室的特征长度,增加了推进剂的停留时间,有利于推进剂充分雾化和燃烧。减小撞击孔径,提高了射流的剪切速率,降低了推进剂的粘性,可以改善雾化和燃烧效率。为了提高含碳凝胶推进剂的燃烧效率,需减小碳粒粒度或者增加燃烧室特征长度。  相似文献   

20.
自燃推进剂旋转爆震燃烧实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
严宇  胡洪波  洪流  杨岸龙  陈帆 《推进技术》2018,39(9):1986-1993
为了拓展旋转爆震燃烧方式在液体火箭发动机领域的应用范围,以一甲基肼为燃料,四氧化二氮为氧化剂,在圆环形燃烧室中组织旋转爆震燃烧。燃烧室内径为30mm,外径为60mm,采用了24对撞击式喷嘴,氧化剂喷孔0.4mm,燃料喷孔0.3mm。用稳态压力传感器和高频动态压力传感器记录供应及燃烧状态。实验中发现:自燃推进剂能够发生旋转爆震燃烧,频率达到7340Hz,爆震波峰值压力达到0.6MPa,爆震波速度达到1384m/s;爆震波引起的压力震荡可向上游喷注器传播;由于自燃推进剂为液/液反应,着火延迟时间约为10ms,在本燃烧室中该时间大于爆震波旋转一周所需的时间,因而爆震波到达时仍有较多的可燃混合物能够参与爆震燃烧;自燃推进剂发生旋转爆震燃烧需要足够大的流量密度,本实验中最小为103.7kg/(s?m2);自燃推进剂在富燃条件下更容易发生旋转爆震燃烧。实验结果表明在火箭的姿态控制发动机上应用旋转爆震燃烧具有一定的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号