首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
为了研究脉冲爆震涡轮发动机(pulse detonation turbine engine,PDTE)共同工作特性和整机性能,建立了其共同工作分析模型。一方面,利用该模型对PDTE原理样机的性能进行了评估并与试验结果进行对比,计算结果表明,模型计算误差不大于11.2%,随着工作频率的提高,PDTE原理样机推力可进一步提升,但共同工作线朝压气机喘振边界靠近。另一方面,以某涡喷发动机为原型,对利用脉冲爆震燃烧室(pulse detonation combustor,PDC)替换主燃烧室后的整机性能进行了研究。计算结果显示:保持PDTE的迎风面积和涡轮前温度与原涡喷相同,PDTE的最佳压气机增压比从原发动机的5.5减小到2.25,当PDTE工作频率达41.5Hz时,流量与原涡喷相同,此时推力比原涡喷提升20.2%,耗油率降低14.0%。   相似文献   

2.
脉冲爆震涡轮发动机原理性试验研究   总被引:4,自引:0,他引:4  
为研究脉冲爆震燃烧室与涡轮及压气机三者相互匹配的详细机理,建立了脉冲爆震涡轮发动机原理性试验系统,其主要由脉冲爆震燃烧室、涡轮增压器、润滑系统、发动机测控系统等组成。在该试验系统上开展了脉冲爆震涡轮发动机原理性试验研究。首次实现了由脉冲爆震燃烧室驱动涡轮,涡轮带动压气机,压气机压缩空气供给爆震室的全闭环自吸气工作模式。试验结果表明:脉冲爆震涡轮发动机能在自吸气模式下持久、稳定地工作,爆震室与涡轮及压气机三者匹配良好,验证了用脉冲爆震燃烧室替代传统等压燃烧室的可行性。  相似文献   

3.
设计、集成了由涡轮增压器、脉冲爆震燃烧室、燃油供给单元、润滑单元和测控单元构成的混合式脉冲爆震发动机原理性试验系统。初步实验研究表明该系统运行可靠。当脉冲爆震燃烧室与涡轮组合工作时,可在一定频率范围内稳定工作;爆震室头部及管壁沿程压力相对于爆震室独立工作时有所提高;压气机出口空气流量远大于爆震室进口空气流量,证明利用压气机给爆震室供气是可行的。在5Hz爆震频率下,涡轮被爆震产物冲击20min后,叶片没有任何烧蚀和裂纹出现。  相似文献   

4.
离心压气机与脉冲爆震燃烧室共同工作分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了掌握压气机与爆震室相互作用机理,实现压气机与爆震室稳定匹配工作,针对离心压气机与爆震室共同工作过程建立了数值计算模型,并采用脉冲爆震涡轮发动机原理性试验系统进行验证,在此基础上结合传统航空发动机中压气机特性分析方法,对反传作用下的压气机工作特性进行了计算分析。结果表明:反传压力波使压气机内出现了瞬间的气体倒流现象,并且会在进气转接段内形成压力波动,使压气机出口长时间处于非稳态工况;压气机与爆震室匹配工作时,压气机工作特性线朝喘振边界靠近,效率低于0.39,而同转速下,压气机单独工作时,其效率均在0.81以上。  相似文献   

5.
脉冲爆震涡轮发动机增推装置性能试验   总被引:2,自引:0,他引:2  
以液态汽油为燃料,通过在双管脉冲爆震涡轮发动机(PDTE)原理样机的涡轮出口加装不同喷管和引射器等增推装置,利用试验研究了不同增推装置对自吸气工作模式下(工作频率10~20 Hz)发动机工作状态及推进性能的影响。结果表明:虽然加装3种尾喷管之后涡轮转速、压气机增压比及压气机流量都有不同程度的下降,但发动机都获得了不同程度的推力增益;相比于工作频率20 Hz时无喷管发动机推力114.95 N,发动机加装尾喷管后最大推力可达143.3 N,实现增推24.7%,最大单位推力为749.87 N·s/kg;加装引射器后可以进一步增推,发动机最大推力达到200.67 N,实现增推39.8%,同时这种增推效果随着工作频率的升高而逐渐增大。  相似文献   

6.
脉冲爆震燃烧室与涡轮相互作用的试验   总被引:3,自引:3,他引:0  
采用汽油和空气作为燃料和氧化剂,进行了脉冲爆震燃烧室(PDC)与涡轮相互作用的原理性模型试验装置的试验.试验结果表明:PDC工作平稳,在发动机爆震工作时压气机出口空气质量流量比用于PDC产生爆震的空气质量流量大100kg/h左右;在PDC出口前已形成充分发展的爆震波,压力波经过涡轮膨胀后峰值压力和波速明显降低;且充填系数越大,各位置处的平均峰值压力越高,压力波经过涡轮后的衰减越小;涡轮在经受累计40多分钟共12 000多次脉冲爆震波或压力波的冲击后仍然完好无损.  相似文献   

7.
脉冲爆震涡轮发动机研究进展   总被引:7,自引:5,他引:2  
介绍了脉冲爆震涡轮发动机的基本概念、主要结构形式以及基本特点.详细介绍了国内外研究状况及课题组的最新研究进展,对脉冲爆震涡轮发动机需要突破的关键技术、主要研究内容以及发展途径进行了探讨.研究表明:相比于传统的涡轮喷气发动机,脉冲爆震涡轮发动机的耗油率能降低5%~15%;在相同的燃烧室入口条件下,与等压燃烧驱动涡轮相比,用脉冲爆震燃烧驱动涡轮时的涡轮的单位输出功率要高;实现了由脉冲爆震燃烧室驱动涡轮,涡轮带动压气机给脉冲爆震燃烧室供气的自吸气模式,表明用脉冲爆震燃烧室代替传统等压燃烧室是完全可行的.  相似文献   

8.
为了提高脉冲爆震火箭发动机的工作频率,设计了一台内径30mm,长度1000mm的电磁阀式脉冲爆震火箭发动机模型.脉冲爆震火箭发动机模型采用航空煤油为燃料,压缩氧气为氧化剂,压缩氮气为隔离气体,通过选用高速大流量电磁阀,加热燃料,安装Shchelkin螺旋等方法,使得该模型能够在20~30Hz频率下多循环稳定工作.工作频率为30Hz时,爆震波峰值压力达到2.2MPa.脉冲爆震火箭发动机的时均推力随着工作频率的提高接近线性增大.   相似文献   

9.
带增压压气机的小型脉冲爆震涡轴发动机性能分析   总被引:2,自引:2,他引:0       下载免费PDF全文
为了解决小型涡轴发动机采用脉冲爆震燃烧室代替主燃烧室时,由于脉冲爆震燃烧室的增压作用,无法从压气机出口引气对燃气涡轮冷却、封严的问题,提出了一种带增压压气机的脉冲爆震涡轴发动机(PDTSE)构型,并建立了相应的性能分析方法。对常规涡轴发动机与带增压压气机的PDTSE性能进行对比研究,计算结果表明:与常规涡轴发动机相比,带增压压气机PDTSE性能具有较大优势;在整个设计域内,综合考虑性能指标和设计难度,在循环最优处,带增压压气机的PDTSE相比普通涡轴的热循环效率高14.5%,耗油率低9.7%,单位功率高27%。  相似文献   

10.
频率30~50Hz两相脉冲爆震发动机研究   总被引:10,自引:0,他引:10  
设计了一台内径58mm,长度1275mm的脉冲爆震发动机(PDE)原型机。采用地面充压进气,在工作频率30~50Hz的工况下研究PDE爆震管内的压力波特性。试验发现,该PDE样机在频率50Hz以内都能够稳定的以间歇方式工作,爆震波峰值压力大于1.6MPa;随着PDE工作频率的提高,工作频率为45~50Hz时,比40Hz以下工作频率提前触发了爆震波,且爆震波得到了充分的发展。  相似文献   

11.
脉冲爆震载荷作用下转子系统动力学特性   总被引:1,自引:0,他引:1  
针对脉冲爆震涡轮发动机(PDTE)气动载荷具有周期性、非定常的特点,应用有限元法建立了PDTE转子系统动力学特性计算模型。在验证计算模型准确性的基础上,研究了周期性、非定常轴向力和扭矩对转子系统动力学特性的影响。研究结果表明:与传统燃气涡轮发动机相比,PDTE转子系统同时存在弯曲振动、轴向振动和扭转振动。脉冲爆震燃烧室的气动载荷会改变转子系统的弯曲刚度,但对气动载荷合理设计后,其对弯曲振动的影响较小。周期性、非定常轴向力引起转子系统轴向振动,且轴向振动特性主要受零频和1阶轴向共振频率处响应的影响。PDTE工作时滚珠轴承的轴向支反力会不断变向,在设计滚珠轴承时应予以考虑。周期性、非定常扭矩引起转子系统扭转振动,1阶扭转共振频率分量在扭转振动响应中占优。   相似文献   

12.
李胜远  郑龙席 《推进技术》2021,42(10):2349-2357
针对脉冲爆震涡轮发动机(PDTE)中的周期性、强非定常轴向载荷可能导致滚珠轴承可靠性降低的问题,应用损伤力学理论和有限元法建立了PDTE中双半内圈球轴承的疲劳寿命预测模型,研究了在脉冲爆震燃烧室(PDC)引入的周期性、强非定常轴向载荷作用下双半内圈球轴承的疲劳寿命。研究结果表明双半内圈球轴承的两个半内圈均在接触区次表面最大切应力位置处萌生裂纹,随后裂纹逐渐扩展至表面导致轴承疲劳失效。在PDC爆震阶段,由于引起第一半内圈疲劳损伤的切应力范围较小,因此第一半内圈的疲劳寿命较高;而在PDC填充和排放阶段,由于接触摩擦作用以及滚珠滚过第二半内圈时产生较大的切应力范围,从而导致第二半内圈的疲劳寿命较低。在对PDC爆震阶段引入的峰值轴向载荷进行合理设计后,PDTE中双半内圈球轴承的疲劳寿命主要由第二半内圈的接触状态和轴承的润滑条件决定。本文的研究成果为PDTE中滚珠轴承的选型与设计提供参考。  相似文献   

13.
为验证高总温空气来流条件下汽油燃料旋转爆震的可行性,开展了气液两相旋转爆震发动机试验研究。旋转爆震发动机环形燃烧室外径和内径分别为202mm和166mm,长度为155mm。通过空气加热器模拟高总温空气来流环境,汽油和空气采用分开喷注的方式,分别通过高压喷嘴和环缝进入燃烧室。试验采用垂直安装的预爆震管成功起爆了旋转爆震波,并实现了旋转爆震波的连续稳定传播。试验结果表明:当空气质量流量为1110.0g/s,当量比为0.97,空气总温为713K时,旋转爆震波以双波对撞模态在燃烧室内连续传播,爆震波传播频率为1827.31Hz,与高频压力信号经快速傅里叶变换得到的主频一致,爆震波传播速度为1059.6m/s。在空气质量流量为1110.0g/s,当量比为0.84,空气总温为713K的工况下进行了3s的长程试验,验证了以高总温空气为氧化剂、汽油为燃料的旋转爆震发动机长时间连续稳定工作的可行性,获得的旋转爆震波传播频率为1907.5Hz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号