首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
主要研究基于PC104平台的MEMS/GPS组合导航系统硬件实现方法.首先设计了对MTi-30 MEMS器件与GPS接收机的数据采集软件,基于统计分析方法分析建立了传感器的误差模型参数,构建了MEMS/GPS组合算法模型,基于MEMS惯性器件和GPS接收机实测数据确定了Kalman滤波器的系统噪声阵及量测噪声阵模型参数;然后利用实际测量数据进行了MEMS/GPS组合系统导航性能仿真;最后基于PC 104嵌入式平台,构建了MEMS/GPS组合导航系统原理样机,分别在静态和动态情况下完成MEMS/GPS组合导航算法实时测试,导航结果验证了硬件平台及导航算法的正确性.  相似文献   

2.
介绍了一种基于MEMS陀螺和石英挠性加速度计的低成本捷联惯性导航系统的设计与实现方法。给出了惯性测量单元(IMU)的模型方程,并在全温下对IMU的输出进行补偿;采用"四元数"法进行姿态计算,通过坐标变换、积分运算确定载体的速度、位置;对惯测样机进行了60 s的静态测试,结果表明该系统短期准确度满足SINS/GPS组合导航系统需求。  相似文献   

3.
针对航空制导炸弹对低成本、高精度、高可靠性导航系统的需求,利用小型化挠性惯性测量组合(IMU)与高精度、高数据更新率的GPS-OEM板组成高精度、低成本的SINS/GPS组合导航系统。SINS和GPS采用速度、位置综合模式,利用Kalman滤波进行数据融合。最后对该组合导航系统进行了数学仿真试验和车载试验。研究表明,此低成本的组合导航系统具有精度高、成本低、可靠性好、体积小等优良指标。  相似文献   

4.
采用基于光纤陀螺的IMU和GPS接收机,以DSP为信息处理核心,实现了GPS/TNS组合导航系统.介绍了光纤陀螺工作原理和误差模型,描述了组合导航系统并通过试验对该系统进行分析.实验结果表明,基于光纤陀螺的组合导航系统误差范围较小,可以满足较高精度的导航定位要求.  相似文献   

5.
微惯性/激光雷达(MEMS IMU/LADAR)组合导航系统在室内应用时,由于室内结构化环境下环境特征(如点和线段)分布稀疏,传统的单一特征匹配算法存在观测盲区,易造成导航定位参数估计误差大的问题。基于此,研究了激光雷达自适应数据分割方法的点和线段的特征提取算法,提出了基于混合特征匹配观测模型的MEMS IMU/LADR扩展卡尔曼滤波(EKF)算法。同时,设计了MEMS IMU/LADR组合导航试验样机,在室内环境下通过试验对滤波算法进行了验证。结果表明:提出的算法在室内结构化环境下相比传统单一点或线特征匹配组合定位算法的定位精度可提高60%,对于小型旋翼无人飞行器在室内结构化环境中的高精度定位具有较高的参考意义。  相似文献   

6.
针对制导炮弹的需求设计了一种组合导航系统。该系统采用微机电 (MEMS)惯性传感器, 集成了GPS 接收机和磁阻传感器, 构成了微小型组合导航系统。 给出了系统的整体设计方案、硬件结构、导航算法设计和试验结果,并讨论了系统设计 中的一些问题。  相似文献   

7.
为提高某型GPS/INS组合导航系统模拟器模拟数据的真实性和飞行软件包、GPS模拟器、组合导航系统模拟器三者交联的有效性,在该模拟器中设计了卡尔曼滤波器。文中在介绍模拟器工作原理的基础上,建立了GPS/INS位置与速度组合方式下的卡尔曼滤波器的状态方程和量测方程,用U-D分解法建立了卡尔曼滤波方程,给出了纯惯导及组合后系统的位置与速度误差仿真曲线,并对仿真结果进行了系统测试,最后与其它模拟器进行了组网导航训练测试。  相似文献   

8.
针对GPS/MEMS 微惯性组合导航系统, 为了提高算法的可靠性和导航精 度, 研究了Kalman 滤波算法。分析了DSP 数字系统的运算能力、构建了优化的数学模 型, 提出了Kalman 滤波混合校正方法, 并将此方法应用于搭建的组合导航系统。通过 跑车试验对该方法进行了验证,试验结果表明,系统的导航精度,姿态误差在0.5°,航 向角误差2°,速度误差0.5m/s。  相似文献   

9.
针对飞行器在进行高动态飞行中卫星导航系统易受干扰、GPS可能被屏蔽,从而导致导航系统失稳甚至发散的问题,采用无迹卡尔曼滤波(UKF)算法对基于捷联惯导系统(SINS)、地磁导航系统(GNS)和嵌入式大气数据系统(FADS)的组合无源导航系统性能进行了改进.建立了地磁数据模型和无源组合导航模型,并针对新的组合导航系统观测方程非线性程度较高问题,提出了利用非线性UKF对导航数据进行融合的方法.利用高动态飞行轨迹对所提出的组合导航系统进行了仿真及误差分析,结果表明该系统对SINS误差估计具有适中的精度.  相似文献   

10.
在基于卡尔曼滤波器并引入了姿态观测量的GPS/SINS组合导航系统中,GPS天线体坐标系与IMU所在的载体坐标系由于安装误差或其他原因不能完全重合,两个坐标系间存在失准角,导致多天线GPS与SINS输出的姿态信息在空间不能同步,这将影响卡尔曼滤波的效果。本文针对这一问题进行了深入的研究,分析了两个坐标系空间不一致的机理,给出了静态和动基座情况下标定两个坐标系位置关系的方法并进行仿真分析验证了其可行性。  相似文献   

11.
GPS/INS uses low-cost MEMS IMU   总被引:3,自引:0,他引:3  
  相似文献   

12.
轻小型飞行器在飞行中卫星导航失效时,余度控制回路要求导航系统具有自主确定姿态的能力.提出了基于IMU的输出确定水平姿态的方法,并采用UKF实现飞行中的实时滤波估计.对某无人机实际飞行的MEMS型IMU数据进行了仿真,结果表明该方法给出的姿态角信息满足控制精度需求.将UKF与EKF滤波估计结果进行比较,UKF更具有优越性.  相似文献   

13.
在黑障区飞行阶段中,惯性导航系统会因缺少辅助导航系统而持续累积误差,导致飞行器导航系统可靠性下降。针对这一问题,提出了一种新的基于极限学习机的黑障区智能导航算法,通过极限学习机(ELM)对GPS正常工作的导航信息进行学习。在黑障区,利用学习得到的模型对惯性导航系统进行误差补偿,较好地修正了当GPS失锁时惯性导航系统的误差,避免了因误差累积而导致的导航信息发散。仿真结果表明,该算法能够保证在GPS失锁的黑障区中导航系统输出的信息有较好的可靠性和精度,能够为接下来的姿态调整和着陆准备提供良好的基础。  相似文献   

14.
根据捷联惯性导航(INS)和GPS导航两个系统不同的特点,通过卡尔曼滤波方法实现了INS/GPS组合导航,以速度差和位置差作为卡尔曼滤波的量测量信息,建立了组合导航的简化滤波方程.在实际陀螺器件含有零偏的情况下,通过在角速度上引入定量的零位偏置来进行弹体模拟投放过程.将仿真导航结果和弹道参数比较,引入的陀螺偏置引起姿态角误差,而速度误差和位置误差比较小,导航计算参数误差在允许范围之内.  相似文献   

15.
GPS/SINS超紧组合导航的性能分析   总被引:1,自引:0,他引:1  
GPS接收机在高动态环境下很容易失锁,特别是载体的高动态造成的应力对接收机载波跟踪环影响很大。为了解决高动态环境下的组合导航,分析了GPS接收机载波跟踪环的测量误差和跟踪门限,采用惯导速度辅助GPS接收机跟踪环路的超紧组合结构。超紧组合需要涉及到GPS接收机跟踪环内部编排及高动态环境下的实验数据,难度较大。针对超紧组合仿真专门开发了GPS实时软件接收机、高动态GPS中频信号仿真器和惯导模拟器并构建了一个完整的GPS/SINS超紧组合仿真系统。仿真结果表明,该超紧组合导航系统可以跟踪50g的加速度和10倍音速。  相似文献   

16.
探讨了一种适用于SINS/DVL组合导航系统的滤波原理,通过分别建立捷联惯导系统误差模型和多普勒误差模型,利用间接卡尔曼滤波原理和反馈校正法,对系统进行仿真与分析,由惯性器件的误差方差通过导航系统的误差模型得出导航参数的误差方差,结果表明,该组合导航系统的定位精度要远远高于单纯捷联惯导系统。同时,针对SINS/DVL组合导航系统工作特点及特定情况下AUV的定位精度要求,提出了一种GPS辅助SINS/DVL组合导航系统导航定位的方案。  相似文献   

17.
在基于对偶四元数的捷联惯导解算方法的基础上,推导了以惯性系作为导航系的惯导误差方程,在此基础上设计了卡尔曼滤波组合导航算法。通过激光惯导跑车采集数据,进行了仿真分析,试验结果表明,该组合导航算法能有效的消除惯导累积的速度误差和位置误差,相比于目前广泛应用的INS/GPS组合导航算法,本文描述了INS/GPS组合导航的另一种实现方式,获得了相当的精度,具有一定的工程应用价值。  相似文献   

18.
Prototype personal navigation system   总被引:1,自引:0,他引:1  
Honeywell Laboratories recently funded the development of a prototype personal navigation system based on MEMS technologies. The system components include a MEMS inertial measurement unit, a three-axis magnetometer, a barometric pressure sensor, and a SAASM GPS receiver. The system also uses Honeywell's human motion-based pedometry algorithm. The navigation process is based on a strap-down inertial navigator aided by feedback from a Kalman filter using typical measurements from the GPS, magnetometer and barometer when available. A key innovation is the addition of an independent measurement of distance traveled based on the use of a human motion algorithm. The navigation system combines the best features of dead reckoning and inertial navigation, resulting in positioning performance exceeding that achieved with either method alone. Subsequent to the Honeywell effort, DARPA funded an individual Personal Inertial Navigation System (iPINS) seedling program. Honeywell worked to improve the baseline personal navigation system with the objective of demonstrating the feasibility of reliably achieving navigation accuracy < 1 % of distance traveled in GPS-denied scenarios. In addition, an analysis was conducted to determine the benefit of incorporating terrain correlation into the personal navigation system. The results of this analysis indicate that overall navigation accuracy can be significantly improved through the application of terrain correlation. This presents an are presented. In addition, conclusions from the terrain correlation analysis conducted under the iPINS seedling program are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号