首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to grasp the interaction mechanism between the pulse detonation combustor(PDC)and the turbine,the experimental work in this paper investigates the key factors on the power extraction of a turbocharger turbine driven by a PDC.A PDC consisting of an unvalved tube is integrated with a turbocharger turbine which has a nominal mass flow rate of 0.6 kg/s and50000 r/min.The PDC-turbine hybrid engine is operated on gasoline-air mixtures and runs for6+min to achieve a thermal steady state,and then the engine performance is evaluated under different operating conditions.Results show that the momentum difference per unit area between the turbine inlet and outlet plays an important role in the power extraction,while the pressure peak of the detonation has little effect.The equivalence ratio of fuel and air mixture and the transition structure between PDC and turbine are also important to the power extraction of the turbine.The present work is promising as it suggests that the performance beneft of a PDC-turbine hybrid engine can be realized by increasing the momentum difference per unit area through the optimal design of transition section between the PDC and turbine.  相似文献   

2.
The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.  相似文献   

3.
This paper investigates the problem of a 2-D plate containing internal cracks at arbitrary angles to the heating surface under thermal shock. The finite difference method is applied to solve the temperature distribution and a difference scheme of the oblique crack is developed. For the first time, a non-Fourier heat transfer analysis method of a 2-D plate with inner cracks at arbitrary direction angles is established. Specifically, for a strip with an inner crack paralleling to the surface,numer...  相似文献   

4.
Discharge coefficients of 3-in-1 hole of three inclination angles and three spacing between holes are presented which described the discharge behavior of a row of holes. The inlet and outlet of the 3-in-1 hole both have a 15° lateral expansion. The flow conditions considered are mainstream turbulence intensities and density ratios of secondary flow to mainstream. The momentum flux ratios varied in the range from 1 to 4. The comparison is made of the discharge coefficients of three shaped holes to find an optimal hole with low flow loss. The results show that the discharge coefficients of 3-in- 1 hole are highest in three shaped holes and therefore this article is focused on the measurements of discharge coefficients of 3-in-1 hole for various geometries and aerodynamic parameters. The measured results of 3-in-1 hole indicate that turbulence intensities, density ratios and momentum flux ratios have weak influence on discharge coefficients for inclination angle of 20°. The high turbulence intensity yields the small discharge coefficients for inclination angle of 45° and 90°. The increased both momentum flux ratios and density ratios lead to the increased discharge coefficients for inclination angle of 45° and 90°. The increased inclination angle causes the rapidly increased discharge coefficients. There is a weak dependence of discharge coefficients on hole pitches.  相似文献   

5.
A new water-cooling Gardon-type heat power measuring apparatus is designed to meet the need of heat power source management and distribution. The steady state measurement mathematic model of the apparatus is built up in theory and the system amplification coefficient is defined as the ratio of the heat power to the temperature difference of the device, with which the value of the measured source power can be calculated easily with the corresponding temperature difference. In order to obtain an optimal heat power measuring system, the coefficients that can influence the relationship between the amplification coefficient, the temperature difference, and the heat power are analyzed. On the basis of these analyses, a set of experimental device is constructed and a number of experiments are carried on. Compared with the input heat power sample data, the error of the experimental measuring results is less than ±2%, and the experimental measuring values are in good agreement with the calculated theoretical ones. The heat power measuring apparatus can be applied in heat flux or heat power measurement in other fields due to its simple structure and high accuracy.  相似文献   

6.
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation(PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller,output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization(H-PSO)algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions(reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID(PID) controller and the conventional PID type fuzzy(F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.  相似文献   

7.
Thermal comfort assessment in civil aircraft cabins   总被引:1,自引:0,他引:1  
Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system(ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote(PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET* of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.  相似文献   

8.
A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant.Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.  相似文献   

9.
Effects of Staged Injection on Supersonic Mixing and Combustion   总被引:3,自引:1,他引:2  
The three-dimensional (3D) reacting flow in a staged supersonic combustor is examined numerically. In order to obtain the optimum stream-wise vortices, a swept ramp injector is chosen as the second-stage wall injection combined with the first-stage central strut injection. The performance of the two-staged injection is compared with that of a one-staged injection, while the strut is kept installed in both cases. The two-staged injections can make full use of the residual oxygen near the wall and release more heat. The second-stage injection further downstream avoids the strong shock waves in the isolator and results in a rising wall pressure and good burning effects after the wall injection. Therefore, it allows more fuel to be injected into the supersonic combustor without causing thermal choking. Parallel injection from the second-stage swept ramp shows low total pressure loss and the best burning efficiency, compared with the other injection angles.  相似文献   

10.
Sliding mode control based guidance law with impact angle constraint   总被引:3,自引:2,他引:1  
The terminal guidance problem for an unpowered lifting reentry vehicle against a sta- tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a desired impact angle. In this paper, a sliding mode control (SMC)-based guidance law is developed to satisfy the terminal angle constraint. Firstly, a specific sliding mode function is designed, and the terminal requirements can be achieved by enforcing both the sliding mode function and its derivative to zero at the end of the flight. Then, a backstepping approach is used to ensure the finite-time reaching phase of the sliding mode and the analytic expression of the control effort can be obtained. The trajectories generated by this method only depend on the initial and terminal conditions of the terminal phase and the instantaneous states of the vehicle. In order to test the performance of the proposed guidance law in practical application, numerical simulations are carried out by taking all the aerodynamic parameters into consideration. The effec- tiveness of the proposed guidance law is verified by the simulation results in various scenarios.  相似文献   

11.
倾斜微槽道热管中纳米流体的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
鲍然  刘振华 《航空动力学报》2010,25(6):1271-1276
为了研究热管倾斜角度和压力对热管蒸发段、冷凝段传热系数以及最大换热功率的影响,对使用水基CuO纳米流体为工质的倾斜微槽道热管强化换热特性进行实验研究.实验装置主要由带角度调节功能的微槽道热管和加热、冷却系统组成.实验结果发现,用水基纳米流体替代去离子水为工质时,热管整体换热特性得到明显增强,蒸发段、冷凝段传热系数以及最大功率都能大幅度提高,总热阻明显降低.倾斜水热管的蒸发段和冷凝段传热系数比水平水热管的有大幅提高,但最大功率变化不大.而倾斜纳米流体热管不但蒸发段和冷凝段传热系数比水平纳米流体热管有大幅提高,而且最大功率更有接近一倍的增加.对水和纳米流体两种工质,对应于最佳换热特性的倾斜角都是75°.因此,纳米流体对倾斜热管有良好的应用前景.  相似文献   

12.
高辰  罗超  史维娜  宋克伟 《推进技术》2020,41(4):868-874
为优化涡产生器强化传热的性能,通过改变三角翼式涡产生器的倾角,数值分析了倾角变化对板式换热器通道内流动与换热特性的影响,倾角变化范围为-30°~30°。获得了不同倾角下通道内的纵向涡、涡量分布,换热及阻力特性。结果表明涡产生器倾斜方向对流动与换热的影响不同,存在最佳的涡产生器倾角-10°,使得换热通道内涡产生器强化换热的性能最优;改变倾角可进一步提高涡产生器的强化传热性能,不同倾角对应努塞尔数和热性能评价因子间的最大差值分别达到8.9%和5.7%。  相似文献   

13.
为解决电子设备热管理问题,根据亲水性植物叶片表面微观凸起结构,以颗粒直径为75μm的电解铜粉为材料烧结制备了锥形毛细芯,制造了3种平板热管:普通蒸发段(No.1)、超亲水蒸发段(No.2)、超亲水蒸发段与超疏水冷凝段匹配(No.3)。以去离子水为工质,研究了加热功率、角度等因素对3种平板热管热性能的影响。结果表明:角度对3种平板热管的热性能影响不大,3种平板热管均具有较好的抗重力特性。超亲水蒸发段与超疏水冷凝段匹配的平板热管热性能最佳,当倾斜角为0°、加热功率为140.4W时,蒸发段中心点温度仅为67.0℃。超亲水蒸发段与超疏水冷凝段匹配的平板热管不仅具有最小蒸发热阻,最小值可达0.05K/W,而且具有最小冷凝热阻,最小值可达0.02K/W。   相似文献   

14.
为有效解决在日蚀区太阳能热推进器推力失效、电力中断的问题,提出了蓄热式太阳能热光伏-热推进双模系统结构,并对系统各部件建立相关物理数学模型,分析了工质种类、工质流量等因素对推进性能的影响。结果表明,为保证推进器在日蚀区30min内持续提供推力和电力供应,砷化镓热光伏电池在无工质工况下能提供10W左右的低功率电力供应,在设计工况下能提供50W~110W的电力供应;液氢作为工质时,最大比冲将达到806s,随着工质流量的持续增加,比冲损失速率呈现先加快后减慢的变化趋势;液氨作为替代工质具有更快的加热速率,其比冲为240s~300s远低于氢工质比冲,其推力系数1.77要略高于氢工质推力系数1.7。通过本文研究,蓄热式太阳能双模推进系统具有较好的可行性,且推力及比冲适中,有望弥补低比冲化学推进和小推力电推进技术的不足。  相似文献   

15.
对纳米流体强化不同倾角轴向丝网热管的换热特性进行了实验研究,实验以水基CuO纳米流体作为工质,在稳压条件下运行,运行压力为7.45,12.38和19.97 kPa(对应的蒸汽饱和温度为40℃,50℃和60℃).实验结果表明,纳米流体质量浓度对倾斜热管的总热阻有明显的影响,存在一个使热管热阻最小的最佳质量浓度,此质量浓度为1.0%.倾角对热管的换热特性有很大的影响,倾角为45°左右时,热管的蒸发换热系数强化率最大.在此倾角下,蒸发换热系数最大增加了20%,热管的总热阻大约降低了15%.而最大热流密度的强化效果则随着热管倾角的增大而增强,最大增加25%左右.  相似文献   

16.
对传统圆形微针肋进行了优化,设计了3种不同尾角的水滴形微针肋热沉,并以去离子水为工质,实验研究了各热沉流动阻力和传热特性.结果表明:3种尾角针肋中,尾角为60时减阻效果最好.水滴形针肋的流线型结构可以改善尾部流动分布,推迟流动由层流向过度区流的转变,且尾角越小效果越明显.不同体积流量下,水滴形针肋的最优尾角有所不同.在实验中,雷诺数范围在200~1000内,尾角为60的水滴形针肋热沉强化换热效果最好.当尾角为30时,太长的尾部结构受到下一排针肋的影响,造成较大的流动阻力,导致其整体换热效果较差.  相似文献   

17.
针对大面积区域高焓、低热流、长时间气动加热环境,对1 m电弧风洞地面模拟试验系统进行了建设与完善,并引入了石英灯辐射辅助加热技术,对400 mm ×400 mm大尺度模型进行了试验,结果表明这种联合加热方式能够有效用于大尺度模型防、隔热及烧蚀热结构性能考核试验研究.  相似文献   

18.
将异型出口设计与气动推力矢量喷管结合,提出了平行四边形截面的旁路式双喉道气动矢量喷管(bypass dual throat nozzle,BDTN),并与基准矩形截面的BDTN进行流场结构及气动性能的对比研究。三维数值计算表明:平行四边形构型与矩形构型具有相同的气动性能变化规律;相较于基准矩形BDTN构型,由于壁面倾斜导致流场结构变化,平行四边形构型在矢量状态下的俯仰矢量角及推力系数有所降低,但对非矢量状态下的推力系数和流量系数影响不大;壁面倾角是性能变化的重要因素,相同落压比时壁面倾角越小,矢量角越小,壁面倾角不小于60°时喷管的稳定矢量角均可达10°以上,最大矢量角均可达15°以上;平行四边形出口增强了尾喷流与环境气流的掺混,出口射流中心线速度衰减大大加快,有利于提高红外隐身特性。  相似文献   

19.
气冷径向稳定器张角对混合扩压器性能影响   总被引:1,自引:1,他引:1       下载免费PDF全文
针对一种混合扩压器和气冷径向稳定器一体化新型结构,基于N-S方程建立了流场三维数值计算模型,研究了气冷径向稳定器张角变化对混合扩压器流场、流阻特性和混合特性的影响规律.结果表明:随着气冷径向稳定器张角的增大,混合扩压器的静压恢复系数逐渐减小,混合扩压器的流阻系数和压力损失系数均逐渐增大;在混合扩压器出口截面处,随着气冷径向稳定器张角的增大,总压恢复系数逐渐减小,总压恢复系数的最大值与最小值相差0.0032.热混合效率逐渐增大,热混合效率的整体变化范围为0.7268~0.8857.   相似文献   

20.
波瓣喷管结构参数对引射混合器性能影响的数值研究   总被引:2,自引:3,他引:2  
通过三维CFD数值计算,研究了波瓣喷管几何结构参数对波瓣喷管引射-混合器的影响规律。计算结果表明:瓣宽增加导致引射流量和波瓣出口处速度环量减小,热混合效率降低,但可以减小混合流动损失,提高总压恢复系数。波瓣扩张角的改变,对引射流量的改变因不同混合管尺寸而异,在混合管直径较小时,随着波瓣扩张角在20~°90°范围内增大,引射流量呈先增加后减小的趋势;在混合管直径较大时,引射量持续提高。扩张角的增加可提高速度环量,但是流动混合损失增加,总压恢复系数减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号