首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
通过在二元翼型风洞中进行测力实验,研究了不同高度Gurney襟翼对超临界翼型气动力和力矩的影响规律。实验结果表明:在亚声速条件下,Gurney襟翼同样可以明显增加翼型的升力系数,使整个升力曲线向上平移,并使翼型低头力矩增加。高度为翼型弦长0.5%的Gurney襟翼可以带来超临界翼型的最大升阻比。同Gur-ney襟翼对NACA 0012翼型气动特性改变的对比表明,其在超临界翼型上带来的升力系数增量要大于在NACA0012翼型上的效果,但是带来的低头力矩增量较小。  相似文献   

2.
后缘襟翼对直升机旋翼翼型动态失速特性的影响   总被引:3,自引:1,他引:2  
刘洋  向锦武 《航空学报》2013,34(5):1028-1035
 针对带后缘襟翼的智能旋翼直升机典型襟翼参数对翼型动态失速特性的影响进行了研究。建立了带后缘襟翼的桨叶动态失速模型,考虑了襟翼与桨叶之间的缝隙和襟翼在运动过程中相对桨叶的凸起,采用计算流体力学(CFD)方法,研究了不同襟翼转轴位置和襟翼与桨叶的缝隙情况下的翼型动态失速特性,探讨了后缘襟翼激励幅值、时长和起始时刻对升力和俯仰力矩系数的影响。研究结果表明:后缘襟翼能够较好地改善翼型动态失速时的气流环境,并减缓动态失速发生;襟翼激励最优幅值在25°附近,最优激励范围在方位角为240°~360°之间;襟翼转轴后移导致襟翼运动时产生的凸起会使襟翼控制效果减弱;襟翼与桨叶的缝隙会影响翼型动态失速特性,但是缝隙的长度(弦长的2%以内)对襟翼控制效果的影响很小。  相似文献   

3.
采用C-H型多块结构网格和SST k-ω湍流模型求解二维定常雷诺平均NS方程,对NACA4412单段翼型后缘附近和NACA63(2)-215B多段翼型襟翼后缘附近的Gurney Flap绕流进行了数值模拟。讨论了局部网格对计算结果的影响,重点研究了Gurney Flap位置和高度对气动特性的影响。计算结果表明:对于NACA4412单段翼型,Gurney Flap位置对气动性能的影响较小,但随着高度的增加,零升攻角和失速攻角减小,最大升力系数增大,同时阻力系数和力矩系数增加;对于NACA63(2)-215B多段翼型,Gurney Flap对气动性能的影响类似于NACA4412单段翼型情形。  相似文献   

4.
Gurney襟翼的单段翼型动态气动特性的影响   总被引:1,自引:0,他引:1  
在西北工业大学NF-3风洞中对OA212MK旋翼翼型加装Gurney襟翼进行了静、动态的测压实验。研究了不同高度的Gurney襟翼在翼型后缘有、无平板(TAB)状态时的增升效果。实验结果表明,高度为0.010c的Gurney襟翼使OA212MK旋翼翼型的最大静态和动态升力系数分别增加了22%和16%,而使OA212MK+TAB的最大静态和动态升力系数分别增加了19%和5%。  相似文献   

5.
具有Gurney襟翼的多段翼型空气动力特性分析   总被引:1,自引:1,他引:1  
增大飞机的升力可以有效地缩短飞机起飞和着陆的滑跑距离 ,本文通过对高升力多段翼型有、无Gurney襟翼时的翼面边界层、尾迹速度分布及表面压力分布的测量等实验方法研究了具有Gurney襟翼时的多段翼型绕流特性及增升规律。实验研究结果表明 ,在α =8°时 ,Gurney襟翼高度为 0 .0 2c和 0 .0 5 5c时 ,使多段翼型升力系数分别增加了 1 3%和 2 2 %。Gurney襟翼的增升效果不仅与Gurney襟翼的高度密切相关 ,而且还与在翼面上的安装位置有关。  相似文献   

6.
郝礼书  乔志德  宋文萍 《航空学报》2011,32(8):1429-1434
为了研究翼型扰流流动控制,设计了一种三角形涡流发生器(VG)和两种Gurney襟翼,通过Gurney襟翼与VG 组合布局的方式进行风洞试验,对比了干净翼、干净翼加Gurney襟翼、干净翼加VG及干净翼加Gurney襟翼和VG这4种状态下的试验结果.试验结果表明:安装Gurney襟翼对翼型线性段升力在同一迎角下有明显提高...  相似文献   

7.
基于联合射流的翼型动态失速流动控制研究   总被引:2,自引:1,他引:1       下载免费PDF全文
动态失速控制对于提高翼型气动特性具有重要意义。采用联合射流方法对翼型俯仰动态失速控制进行数值模拟,完成两方面的研究:一是射流关闭时射流通道对动态失速特性的影响,二是射流开启时不同射流动量系数对动态失速控制的影响和分析。结果表明:射流关闭时,射流通道的存在对翼型上仰过程中附着流阶段的气动特性产生不利影响,使得升力系数明显下降,但是对翼型下俯过程中失速分离流阶段的气动特性影响不明显;射流开启后,动态失速特性得到极大改善,迟滞环面积显著减小,升力增加,阻力减小,且阻力和力矩的峰值显著减小,原基准翼型力矩曲线的负阻尼区域消失。  相似文献   

8.
主动偏转后缘操纵面可以减小翼型动态失速对气动特性产生的不利影响。研究连续变弯度后缘操纵面在减缓翼型动态失速方面的性能,利用CFD 结合动网格方法,计算NACA 0012 翼型在大幅度俯仰振荡时的非定常气动力;从减缓效果和能量需求两个方面,对比传统刚性操纵面和两种连续变弯度操纵面的动态失速减缓性能。结果表明:当后缘操纵面按正弦脉冲规律偏转时,可以推迟前缘涡的产生,加速后缘涡的发展,降低压力分布在后缘的峰值,进而减小动态失速时翼型的低头力矩极值;后缘操纵面的弯度构型会影响减缓效果,在相同的偏转策略下,弯度描述函数为2 阶多项式的连续变弯度操纵面的减缓效果最好,且能量需求最小。  相似文献   

9.
黄炜  龚志斌  李杰 《飞行力学》2012,30(4):300-303,309
采用求解N-S方程的方法,分别对安装后缘装置(Lift Enhancing Tabs,LET)中的传统形式Gurney襟翼(Gurney Flap,GF)和新型后缘装置(Mini-Trailing Edge Device,Mini-TED)后的多段翼型气动特性进行了分析研究。以带有30%弦长富勒襟翼的NACA632-215B两段高升力翼型为基础,分析了不同安装位置的GF对气动特性的影响。结果表明,在中等襟翼偏角下主翼尾缘安装GF对气动特性是不利的,而GF在襟翼尾缘的安装则有实际应用的可能。针对某真实飞机起飞、着陆构型多段翼型,研究了襟翼后缘不同偏角的Mini-TED对气动特性的影响。计算结果表明,通过对Mini-TED安装偏角的优化,对于不同的构型和飞行状态可以增大其改善飞机气动特性的使用范围。  相似文献   

10.
翼型前缘变形对动态失速效应影响的数值计算   总被引:1,自引:1,他引:0  
卢天宇  吴小胜 《航空学报》2014,35(4):986-994
翼型或机翼的动态失速效应所引起的低头力矩和正气动阻尼限制了飞行器气动性能的提高,甚至可能诱导发生不稳定运动。应用于小尺寸机翼的前缘动态变形(DDLE)技术,通过实时改变前缘形状,能够改善翼型前缘区域的速度梯度,进而抑制动态失速效应。采用转捩剪切应力输运(SST)黏性模型结合分区混合动态网格技术,研究了这种前缘变形对机翼俯仰运动所引起的非定常流动的影响,得到通过小幅度前缘变形抑制和延迟动态失速的方法,从而提高翼型的气动性能。翼型NAC A0012的数值模拟结果与动态失速风洞试验结果比较表明:所使用的数值计算方法能够较为准确地模拟翼型在动态失速过程中升力系数与俯仰力矩系数的变化情况,可用于研究前缘变形对翼型俯仰运动所引起的非定常流动的影响。前缘动态变形翼型俯仰运动过程的非定常流场的数值模拟表明:在大迎角下不同幅度的前缘下垂运动能够抑制流动分离的发生,从而抑制动态失速,但在大迎角下小幅度高频率的前缘下垂变形能更高效地抑制动态失速;前缘变形幅度以及变形沿中弧线的分布对升力系数和俯仰力矩系数的影响并不明显。  相似文献   

11.
加装格尼襟翼的自转旋翼气动特性研究   总被引:1,自引:0,他引:1  
崔钊  韩东  李建波  姬乐强  朱清华 《航空学报》2012,33(10):1791-1799
为了研究格尼襟翼对自转旋翼气动特性的影响,首先建立了翼型加装格尼襟翼的二维气动特性计算模型,分析了NACA0012翼型及该翼型加装1%、2%弦长高度格尼襟翼的气动特性,理论计算结果与试验结果的对比表明了本计算模型的正确性。基于叶素理论建立了自转旋翼动力学模型,采用Pitt-Peters动态入流模型捕捉自转旋翼诱导速度沿桨盘的非均匀分布特性。最后进行了自转旋翼加装不同高度格尼襟翼的气动特性分析,结果表明:翼型加装1%弦长高度的格尼襟翼后,在20 m/s到35 m/s的来流速度下,自转旋翼的阻力平均减小可达26%;加装高度为2%弦长的格尼襟翼后,在20 m/s到35 m/s的来流速度下,自转旋翼的阻力平均减小达17%。自转旋翼的气动效率得到明显提高。  相似文献   

12.
为了研究低雷诺数下格尼襟翼对翼型气动特性的影响,通过风洞试验研究了Eppler387翼型加装0.5%~5.0%弦长高度格尼襟翼后的气动特性变化,试验雷诺数1.49×105~2.31×105。试验结果表明:低雷诺数下Eppler387翼型加装格尼襟翼后,升力系数和力矩系数明显增大,襟翼高度大于2%弦长时阻力系数显著增大。格尼襟翼在高升力系数下能够起到增大升阻比的作用,适用于微小型飞行器工作在大载荷状态,而0.5%弦长高度的襟翼还能够兼顾中小升力系数下的气动效率,同样适合于微小型飞行器在巡航状态使用。与原翼型相比,加装襟翼后最大升阻比对应的迎角提前,随襟翼高度的增加,翼型升阻比曲线峰值变得不再突出。  相似文献   

13.
提出了一种新型风机叶片的翼型设计思想。通过在翼型上表面后缘附近设计一个凹坑,形成了一种稳定的驻涡流动,利用该驻涡的影响,与传统的Gurney襟翼联合作用下,提高翼型的气动性能。通过将该方法在瑞士FFA-W3-301风机翼型上的初步运用,数值模拟结果表明:所提出的新型翼型设计思路,不但可以在相同迎角下提高翼型的升力系数,而且可以将原来翼型的失速迎角从12°提高到18°,极大地扩大了翼型的迎角工作范围。是一种具有一定探索潜力的新思想。  相似文献   

14.
杨鹤森  赵光银  梁华  王博 《航空学报》2020,41(8):23605-023605
深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。  相似文献   

15.
岑梦希  叶正寅  叶坤  杨青 《飞行力学》2012,(1):17-19,24
为了提高飞机在着陆过程中的气动性能,提出了一种新方法:将翼型上翼面的一段表面设计为活动部分。当飞机进入着陆阶段的较大迎角时,通过活动部分在上翼面形成一个台阶产生稳定的驻涡,再联合Gurney襟翼,达到同时提高翼型的升力、失速迎角及增加翼型阻力的目的。在NACA2415翼型上对上述方法进行了验证。结果表明,翼型最大升力系数从原始翼型的1.548 232提高到2.160 687,最大升力系数所对应的迎角可以从原始翼型的17°提高到20°。可见,所提出的新方法对提高飞机的着陆性能是有效的。  相似文献   

16.
The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes(URANS) solver coupled with k-x Shear Stress Transport(SST) turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7 B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters(jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet) on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet's angles and momentum coefficients on control effects are similar to those of the unique jet. Finally,unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor.  相似文献   

17.
《中国航空学报》2019,32(11):2395-2407
A series of wind tunnel tests were performed to investigate the effect of turbulent inflows on the aerodynamic characteristics of the unsymmetrical airfoil at various turbulence intensities and Reynolds number. To assess the aerodynamic characteristics, surface pressure measurements were made over the unsymmetrical airfoil surface by using a simultaneous pressure scanner MPS4264 of Scanivalve make. Self-generated passive grids made of parallel arrays of round bars were placed at four different locations to generate various Turbulence Intensities (TI) in the wind tunnel. The location of the passive grid has been normalized in terms of considering the distance between the entry of the test section and the leading edge of the model. Based on the wind tunnel results, by comparing the baseline without grid low turbulence case TI = 0.51% with other turbulence generated cases like TI = 4.68%, 4.73%, 6.04% and 8.46% at different Reynolds number, it is found that the coefficient of lift increases with the increase in the turbulence intensity. Results also reveal that the flow featuring turbulence can effectively delay the stall characteristics of an airfoil by attaching the flow over the airfoil for an extended region. Additionally, attempts were made to understand the influence of turbulence on the aerodynamic hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号