首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用风洞试验与数值模拟相结合的方法,研究典型山地地形竖向风速的大小与分布。在风洞中模拟B类地貌边界层流场,采用眼镜蛇风速测量仪,测定了具有一定山脉长度的典型陡坡单山迎风坡竖向风速剖面,获得了离地10m高处竖向风速分布。对照试验结果对典型山地地形进行CFD模拟,研究了不同山体高度、山体坡度、山脉长度以及顺山脉(0°)和垂直山脉(90°)风向角下竖向风速的分布规律。通过上述研究发现:CFD结果与试验结果吻合良好;竖向风速在迎风坡离地10m高度处可达来流顺风向风速的60%;最大竖向风速出现在迎风坡2/3山高以上的区域;垂直山脉风向角下,迎风坡与山顶的最大竖向风速均随山脉长度递增;顺山脉风向角下,迎风坡最大竖向风速随山脉长度递减,山顶最大竖向风速受山脉长度变化影响较小。研究认为:在1/3山高以上的迎风坡位置应当考虑竖向风速,且在山高与山底直径之比大于1∶5时,需要考虑山顶位置的竖向风速。  相似文献   

2.
为研究非高斯风场作用下桥梁结构的抖振响应特性,以太洪长江大桥为例,基于Hermite多项式模型,模拟了非高斯脉动风场时程,计算了不同平均风速下不同非高斯特性脉动风场的抖振响应。结果表明:非高斯风场作用下结构响应的幅值和均方根值均比高斯风场更大,非高斯特性越强,均方根值越大;随着平均风速的增加,风场峰度对结构响应均方根的影响逐渐明显。因此,对于非高斯风场,高斯过程假定低估了实际的响应情况。此外,不同非高斯特性脉动风场作用下,结构响应的偏度和峰度均趋近高斯过程的结果。  相似文献   

3.
为获得双山情况水平风的加速效应,采用计算流体动力学(CFD)方法对左右排列、前后排列和斜列情况双山水平风的加速比和分布特征进行了研究,通过典型工况风洞试验验证了CFD模拟的准确性。研究表明:山体上水平风加速比的分布特征为山前、山顶和山后分别是减速区、最大加速位置和尾流区;左右排列双山的加速比随着山体间距的减少而增加,双山间距为0m时加速比最大,单山情况加速比最小,单山相当于双山间距无穷远情况;前后紧密排列双山情况下,前山对后山有遮挡效应,后山使得前山的水平风速略微降低,水平风速加速比呈现单山前山后山的规律,但三者差别较小;斜列情况下风向角对山顶水平风加速比的影响较小;山体的CFD计算结果与澳大利亚/新西兰规范比较接近,中国规范关于山体加速比的规定比较保守。  相似文献   

4.
垭口地貌要素对风速分布规律影响的风洞试验研究   总被引:1,自引:0,他引:1  
输电线路微地形气象灾害的调查研究显示,垭口地貌影响下的输电线路风偏闪络事故多发。鉴于垭口地貌不同位置处的风剖面分布规律尚不明确,借助风洞试验,研究了垭口地貌的山丘坡度、谷口宽度等地貌要素对山谷及山脊中轴线上风速分布规律的影响。风洞试验结果表明:与平地风速相比,山谷中轴线及山丘峰顶处风速的最大加速幅度分别达到了33%和53%,明显大于规范规定的10%,容易造成垭口区域内输电线路风偏闪络或倒塔;山谷中轴线风速修正系数随两侧山丘坡度增加而增加,随谷口宽度增加而减小,提出了符合这一规律的计算公式;山谷中轴线上,下风侧风速加速效应略强于上风侧;垭口两侧山丘山顶处风速未受垭口地貌影响,风洞试验测得风速修正系数与单体山丘拟合公式的计算结果基本一致;设计时可统一偏于保守地取用山丘顶部的风速修正系数对平地风速予以修正。  相似文献   

5.
为了探究台风影响期间不同大气稳定度条件对近地层风场特性的影响,基于2009年台风"莫拉克"移动路径上的三座测风塔测得的高频三维风速时程,分析了台风影响期间中性、稳定、不稳定三种大气层结状况的分布频率,以及不同稳定度条件下近地层平均风场特性(平均风速和风向)和脉动风场特性(湍流强度、阵风因子、湍流积分尺度和脉动风速谱).研究结果表明,台风外围雨带区影响期间非中性层结发生概率约44%;在非中性层结影响下,平均风速出现频率最高的区间(10~12?m/s,14~16?m/s)不同于中性层结(12~14?m/s),且湍流强度最高频数分布较为集中(8%~10%);验证von-Karman谱描述不同大气稳定度下台风脉动风速谱的适用性,发现该经验谱对中性层结下的风速谱刻画较好,对非中性层结下的风速谱存在低频段高估、高频段低估谱能量的现象.进行工程结构抗风设计时,需注意非中性大气层结对风速、湍流强度、脉动风速谱等与结构风荷载确定密切相关的参数的影响.  相似文献   

6.
利用安装在西堠门大桥上的超声风速仪和螺旋桨式风速仪对西堠门大桥桥址区风场特性进行了长期连续现场观测。基于现场实测结果,对季风气候下桥位处的脉动风湍流强度、阵风因子、湍流积分尺度、脉动风速功率谱密度、平均风速剖面以及脉动风速空间相关性等参数进行了分析。这些观测结果可为我国沿海地区风场特性研究提供借鉴和参考,并为其他相似大跨度桥梁设计和施工提供借鉴。  相似文献   

7.
利用多普勒激光雷达在琼州海峡北岸徐闻地区从2018年9月15日12:28到2018年9月17日13:53对1822号超强台风山竹外围风场进行实测,获得台风登陆前29个小时至登陆后21个小时时间范围内每隔10min一次的近地层风速剖面演变数据。总结台风远端风场演变过程的4个阶段:外围小风、登陆前强风切变、登陆后低空急流、台风远离时风速衰减;发现台风远端风场S形和反C形2种风剖面形态;总结距离台风中心230~750km范围内最大风速高度沿台风半径向外先增大后减小的趋势;发现台风登陆前远端风场平均最大风速高度约360m,平均风剖面幂指数0.41,登陆后平均最大风速高度约800m,平均风剖面幂指数0.28;验证Vickery提出的对数律修正模型对台风远端风场风剖面形态的适用性,发现该模型对反C形风剖面拟合度较好,对S形风剖面上部重现度较差。  相似文献   

8.
我国沿海地区的台风风场研究与预报具有显著的经济和社会效益.多尺度风场数值模拟方法是将WRF中尺度数值气象模拟同小尺度风场大涡模拟结合的数值模拟方法,可实现台风影响下沿海复杂地形风场的精细化研究.本文以2012年台风启德为背景,通过WRF模式有效再现了台风中心路径和近地平均风速风向的24?h时程;采用循环入流方法,将WRF得到的平均风剖面中加入高频风速成分,并作为复杂地形风场大涡模拟的入口条件,模拟近地风场的时间和空间分布.研究表明,台风登陆后受到沿海复杂地形的影响,近地流向湍流强度较海面上增强1倍左右,风速高频成分显著增强,并出现了0.73?m/s向下的竖向平均速度,对局部地区的抗风安全产生较为不利的影响.  相似文献   

9.
脉动风场的模拟方法及其在输电线路风振计算中的应用   总被引:1,自引:0,他引:1  
针对脉动风场各种模拟方法的适用性问题,在相同的输电塔线实例上进行模拟方法的应用,对比各种方法的计算效率和计算结果,分析各种模拟方法的适用性和等价性,最后探讨单塔和塔线体系计算结果的差异。研究表明:基于POD分解的WAWS法不存在风速互谱密度矩阵无法分解的情况,计算效率较高,因此推荐使用。考虑三维风场后响应的脉动均方根比一维风场大;塔线体系中计算得到的响应均方根比单塔大。  相似文献   

10.
关于风洞中用尖劈和粗糙元模拟大气边界层的讨论   总被引:10,自引:0,他引:10  
尖劈和粗糙元广泛地应用于风洞试验中的大气边界层模拟,该技术成功模拟了不同地貌特征的平均风速和湍流度剖面。随着风工程研究的深入,了解尖劈和粗糙元模拟过程中的作用机理有助于准确地模拟各种大气边界层湍流功率谱和尺度特性。试验表明:尖劈利用其迎风平板的分离流产生湍流涡旋,迎风板的宽度决定了涡旋的大小和湍流脉动强度,同时迎风板阻塞比沿高度递减产生近似线性的风速剖面;粗糙元用于模拟实际地面的摩擦效应,调整平均风速和湍流度的剖面分布。遗憾的是,尖劈下宽上窄的结构特点决定了该技术模拟的湍流功率谱和积分尺度的高度变化律与实际大气边界层相反。基于对模拟机理的认识,异型尖劈上部形状有助于模拟大比例模型试验要求的湍流风场。  相似文献   

11.
非平稳风速模型将实测风速记录分解为时变平均风与平稳脉动风的叠加。研究提出利用脉动风平稳度指标确定时变平均风的方法,定义不同时距摩阻速度的比值为脉动风平稳度指标,在所有可能的选择中,最优时变平均风应使脉动风在满足平稳性要求的同时平稳度指标最大。应用于实测10分钟550组台风及3300组季风数据表明该提取方法合理有效。  相似文献   

12.
为研究湍流特性对矩形高层建筑风荷载及周围绕流特性的影响,对4种不同地貌条件下9种深宽比的矩形高层建筑进行了风洞测压试验,考察了湍流度与湍流积分尺度对不同深宽比建筑平均、脉动与极值风压,以及横风向气动力谱和流动分离再附特性的影响规律。结果表明,随湍流度增大,分离流更早再附于侧风面上,郊区地貌下再附点出现位置较开阔地貌提前约30%,且分离流下平均风压减小、极值风压增大(均指绝对值),最不利脉动风压与极值出现位置更靠近前缘;随湍流积分尺度减小,迎风面、背风面与侧风面的平均和极值风压均减小,但湍流积分尺度对分离再附流形态及分离流下的风压分布形状影响不大。相对于深宽比更大的情况,湍流特性对深宽比介于1到2的建筑影响更大。  相似文献   

13.
采用刚性模型进行测压试验,得到了不同雷诺数下准椭圆形覆冰导线的风压分布规律,通过对比平均风荷载、脉动风荷载及风荷载谱等参数,分析了雷诺数对风荷载以及横风向驰振稳定性的影响。当雷诺数达到临界区,与亚临界区的对应值相比,平均阻力系数下降、平均升力系数随风向角变化幅度大且在某些对称工况产生横风向平均升力系数;平均风压系数分布对风向角等参数更为敏感。旋涡脱落由亚临界区的规则脱落变为不规则脱落,周向风压相关性减弱,特征频率消失。临界区内平均升力系数急剧的下降段使得结构更易发生横风向驰振。  相似文献   

14.
北大体育馆屋盖的风荷载及周边建筑干扰影响的试验研究   总被引:2,自引:0,他引:2  
结合北京大学体育馆屋盖结构的风洞模拟试验,分别考虑了有无周边建筑两种情况下的风压分布。以屋盖上的平均风荷载和脉动风荷载为研究对象,对屋盖上的风荷载特性和周边建筑的干扰影响进行了详细的分析。得出的主要结论:上游建筑物的干扰一般会减小屋盖上的平均风压,增大屋盖上的脉动风压,且对迎风前缘的影响比对其他部位的影响大;周边建筑物的布置,也有可能产生"兜风效应"从而显著地增大风压;周边建筑的影响使风压分布更加分散,脉动风荷载对于总的设计风荷载来说不能忽略。  相似文献   

15.
伞形膜结构组合屋盖风荷载特性的风洞试验研究   总被引:1,自引:0,他引:1  
结合井冈山机场航站楼的风洞试验,分析了伞形膜结构组合屋盖平均风压与脉动风压的分布特性,并从平均风压与脉动风压相关性的分析中讨论了准定常理论的适用性,同时探讨了脉动风压的概率分布,并对峰值因子的取值提出了建议,论文提出对不同紊流区应分别对待的观点,获得了可用于指导一般伞形组合屋盖结构抗风整体设计和局部设计的规律.  相似文献   

16.
通过风洞实验对三种典型山体地貌中低矮房屋的风压分布规律进行了研究,并与无周边时的低矮房屋风压分布状况进行了对比,重点讨论了低矮房屋在0°风向角下,随山坡坡度变化时平均风压系数、体型系数的变化规律,进而分析了低矮房屋在0°~90°风向角下的平均风压系数的变化趋势。结果表明:低矮房屋的风压分布受山体的坡度影响较为明显,其中背风墙面较为显著;随着山坡坡度的增大,屋面的平均风压逐渐由负压变为正压,山坡坡度β=90°时,背风屋面体型系数相对无周边时增大250%;某些部位(迎风墙面中线、背风屋檐、迎风屋檐)等处测点出现绝对值较大的平均风压系数,应在设计时引起注意;测点在不同风向角下的平均风压系数与山体环境有很大关系,在考虑低矮房屋设计时,应取最不利风向角下的风荷载进行计算。  相似文献   

17.
基于双POD模型的大跨屋盖多模态随机风致响应研究   总被引:1,自引:0,他引:1  
讨论了具有空间相关三维随机风荷载的数学模型.风荷载的准确模拟是结构进行风致动力响应分析的第一步,POD法提供了一种高效、准确的风荷载模拟方法.本文根据双POD模型和Monte Carlo模拟法,详细研究了空间相关三维风场的数值模拟方法,模拟的风场与实际较为一致.结合随机离散法和多阶模态加速度法的原理,详细推导了大跨屋盖风致响应与风振系数的计算方法.通过大跨屋盖刚性和气弹模型风洞试验,得出高阶振型对大跨屋盖结构的风致响应的贡献不可忽略,并计算了屋盖的风致动力响应时程.研究了大跨屋盖表面荷载风振系数和位移风振系数的分布,结果与有限元分析较为吻合,证实了本文提出的方法是一种高效、准确的大跨屋盖风致响应计算方法.  相似文献   

18.
利用日本宫崎大学11×9多风扇主动控制来流风洞和高精度动态天平测力设备,测量了类平板断面在正弦风波来流条件三分量气动力荷载,比较了不同来流平均风速、波动幅值、脉动频率和积分尺度等参数条件下类平板断面荷载效应。报导并证实了大气边界层物理风洞固定壁面边界反射效应所产生的倍频放大效应;在获得并验证正弦风波加载离散频率荷载效应可线性迭加的有效频段区间内,初步比较了来流积分尺度和风速湍流度效应对于气动荷载效应的影响,阐明典型节段模型风洞试验结果与传统随机抖振气动力理论的差异。  相似文献   

19.
体育场看台挑篷的风荷载及干扰效应分析   总被引:1,自引:0,他引:1  
针对一个典型的体育场看台挑篷,进行了刚性模型风洞试验,确定其平均风压和脉动风压,通过对挑篷升力系数的讨论,分析其上下表面风压和风压合力的分布规律.并考虑临近山体对挑篷的气动干扰,分析有、无干扰体情况下升力系数的不同分布规律,采用干扰因子对比分析山体对左右两个挑篷风压的影响,同时采用脉动干扰系数来分析干扰对挑篷脉动风压的影响,得出一些具有重要参考价值的结论.  相似文献   

20.
风速场模型对风-车-桥系统耦合振动特性影响研究   总被引:2,自引:0,他引:2  
侧向风的作用会增大车—桥耦合振动系统的响应。本文将风、车、桥三者作为一个相互作用、协调工作的耦合振动系统,建立了风—车—桥系统空间耦合分析模型。以京沪高速铁路南京长江大桥为工程背景,采用自行研发的桥梁结构分析软件BANSYS对比研究了不同风速场模型对车辆及桥梁动力响应的影响,剖析了自然大气中平均成份和脉动成份在耦合振动系统中的作用。分析结果表明,在风—车—桥系统耦合振动分析中,采用空间真实相关的脉动风速场是必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号