首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Moving Targets Processing in SAR Spatial Domain   总被引:2,自引:0,他引:2  
This paper presents a novel technique to estimate the initial coordinates and velocity vector of moving targets, including those with velocities above the Nyquist limit, using a single synthetic aperture radar (SAR) sensor without increasing the pulse repetition frequency (PRF). The basic reasoning is that, although the returned echoes may be undersampled in the azimuth direction, their phase and amplitude are informative with respect to the moving target trajectory parameters. Therefore, the so-called blind angle ambiguity, inherent to systems using a single SAR sensor, is overcome. The proposed method samples the data in the spatial domain, along the signature curve which depends on the moving target trajectory parameters. The resulting algorithm is a highly efficient (from the computational point of view) ID matched filter. The effectiveness of the proposed scheme is illustrated using simulated SAR data and real data from the MSTAR public release data set, corresponding to a static SAR scene and a static BTR-60 with simulated motion.  相似文献   

2.
Detecting moving targets in SAR imagery by focusing   总被引:1,自引:0,他引:1  
A new method for detecting moving targets in a synthetic aperture radar (SAR) image is presented. It involves segmenting a complex-valued SAR image into patches, focusing each patch separately, and measuring the sharpness increase in the focused patch. The algorithm is sensitive to azimuth velocities and is exquisitely sensitive to radial accelerations of the target, allowing it to detect motion in any direction. It is complementary to conventional Doppler-sensing moving target indicators, which can sense only the radial velocity of rapidly moving targets.  相似文献   

3.
SAR imaging of moving targets   总被引:6,自引:0,他引:6  
A method of forming synthetic aperture radar (SAR) images of moving targets without using any specific knowledge of the target motion is presented. The new method uses a unique processing kernel that involves a one-dimensional interpolation of the deramped phase history which we call keystone formatting. This preprocessing simultaneously eliminates the effects of linear range migration for all moving targets regardless of their unknown velocity. Step two of the moving target imaging technique involves a two-dimensional focusing of the movers to remove residual quadratic range migration errors. The third and last step removes cubic and higher order defocusing terms. This imaging technique is demonstrated using SAR data collected as part of DARPA's Moving Target Exploitation (MTE) program  相似文献   

4.
Synthetic Aperture Radar (SAR) imaging and Automatic Target Recognition (ATR) of moving targets pose a significant challenge due to the inherent difficulty of focusing moving targets. As a result, ATR of moving targets has recently received increased interest. High Range Resolution (HRR) radar mode offers an approach for recognizing moving targets by forming focused HRR profiles with significantly enhanced target-to-(clutter+noise) (T/(C+N)) via Doppler filtering and/or clutter cancellation. A goal of HRR ATR transition is the implementation and evaluation of algorithms exhibiting robustness under extended operating conditions (EOC). The public domain Moving and Stationary Target Acquisition and Recognition (MSTAR) data set was used to study 1D template-based ATR development and performance. Due to the unavailability of a statistically significant moving ground target data set, this approach was taken as an interim step in assessing the separability of ground targets when using range only discriminants. This report summarizes the data and algorithm methodology, simulated performance results, and recommendations  相似文献   

5.
A novel methodology is presented for determining the velocity and location of multiple moving targets using a single strip-map synthetic aperture radar (SAR) sensor. The so-called azimuth position uncertainty problem is therefore solved. The method exploits the structure of the amplitude and phase modulations of the returned echo from a moving target in the Fourier domain. A crucial step in the whole processing scheme is a matched filtering, depending on the moving target parameters, that simultaneously accounts for range migration and compresses two-dimensional signatures into one-dimensional ones without losing moving target information. A generalized likelihood ratio test approach is adopted to detect moving targets and derive their trajectory parameters. The effectiveness of the method is illustrated with synthetic and real data covering a wide range of targets velocities and signal-to-clutter ratios (SCRs). Even in the case of parallel to platform moving target motion, the most unfavorable scenario, the proposed method yields good results for, roughly, SCR > 10 dB.  相似文献   

6.
RFI suppression for ultra wideband radar   总被引:1,自引:0,他引:1  
An estimate-and-subtract algorithm is presented for the real-time digital suppression of radio frequency interference (RFI) in ultrawideband (UWB) synthetic aperture radar (SAR) systems used for foliage- and ground-penetrating imaging. The algorithm separately processes fixed- and variable-frequency interferers. Excision of estimated targets greatly reduces bias in RFI estimates, thereby reducing target energy loss and sidelobe levels in SAR imagery. Performance is demonstrated on data collected with the Army Research Laboratory's UWB rail SAR.  相似文献   

7.
In a synthetic aperture radar (SAR) targets on the ground that are moving become smeared as a result of velocity components parallel to the motion of the radar and are moved to radically different angular positions if they have velocity components perpendicular to the motion of the radar. Methods for restoring moving targets to their correct size and position are described. The samples collected for SAR processing are frequency-modulated RF pulses. Mathematically this leads to spectra that are described by Fresnel integrals. For stationary targets, the spectrum is symmetrical around the origin. If there is a moving target in a range cell, its Doppler spectrum will be displaced from the origin and may undergo other changes as a result of its nonzero velocity. Proper compensation to locate the target at the correct position requires that the spectrum be translated to a position dependent on the along-track velocity rather than to the origin. From the central frequency, the along-range velocity component can be estimated and the length of the translation can then be found. After translation, the spectrum is converted back to the time domain and the customary SAR processing is performed  相似文献   

8.
Moving Emitter Classification   总被引:1,自引:0,他引:1  
One of the problems that plague emitter location systems is the presence of data from emitters that are in motion. If this motion is not detected, erroneous location estimates and filled data files result. An algorithm to classify an emitter as moving or stationary is presented along with extensive illustrations and results based upon simulated data.  相似文献   

9.
The use of the output of an array of sensors to track multiple independently moving targets is reported. The output of each sensor in the array is the sum of signals received from each of the targets. The results of direction-of-arrival estimation by eigenvalue analysis are extended to derive a recursive procedure based on a matrix quadratic equation. The solution of this matrix quadratic equation is used to provide updated target positions. A linear approximation method for estimating the solution of the matrix equation is presented. The algorithm is demonstrated by the simulated tracking of two targets. The main advantage of the algorithm is that a closed-form solution for updating the target angle estimates has been obtained. Also, its application is straightforward, and the data association problem due to uncertainty in the origin of the measurements is avoided. However, it requires the inversion of an N×N as well as other linear operations, so that the computational burden becomes substantial as N becomes very large  相似文献   

10.
主要研究了INS/SAR组合对运动目标的定位算法。首先,建立了INS/SAR组合定位系统数学模型;其次,基于卡尔曼滤波方法和alpha-beta滤波方法完成了INS/SAR组合定位算法设计;最后,考虑组合导航系统误差及导引头测量误差,对定位算法进行了数字仿真及性能分析。仿真结果表明,所设计的INS/SAR组合定位算法在远距对运动目标具有较高的定位精度。  相似文献   

11.
12.
基于傅里叶变换的航迹对准关联算法   总被引:7,自引:2,他引:5  
何友  宋强  熊伟 《航空学报》2010,31(2):356-362
研究了在组网雷达存在系统误差情况下的目标航迹关联问题,理论分析了雷达系统误差对目标航迹的影响,并将该影响表示为目标航迹的旋转和平移量。在此基础上,提出了一种基于傅里叶变换的系统误差配准前航迹对准关联算法,该算法将组网雷达的航迹数据看做为一种整体信息,采用傅里叶变换理论来估计和补偿组网雷达目标航迹数据到融合中心航迹数据的相对旋转量和平移量,将雷达网中雷达上报的目标航迹数据对准到融合中心,从而不依赖于估计雷达网系统误差,实现了误差配准前的航迹准确关联,能够为后端的系统误差配准提供可靠的关联目标航迹数据。  相似文献   

13.
利用分数阶Fourier域滤波的机载SAR多运动目标检测   总被引:5,自引:0,他引:5  
 强度相差较大的多运动目标检测是机载合成孔径雷达 ( SAR)技术的一个重点和难点,传统的频域滤波和现代的时频分布方法都无法解决这个问题。首先分析了机载 SAR运动目标回波本质上为线性调频信号,据此提出一种基于分数阶 Fourier域滤波的运动目标检测新方法,并且应用逐次消去的思想有效地解决了强度相差较大的多目标检测问题。仿真的结果验证了算法的有效性。  相似文献   

14.
韦北余  朱岱寅  吴迪 《航空学报》2015,36(5):1585-1595
对超高频(UHF)波段多通道合成孔径雷达(SAR)动目标检测技术进行研究,解决了长相干积累时间导致动目标在方位向散焦严重的问题。采用分块自聚焦技术对多通道SAR地面移动目标指示(GMTI)系统自适应杂波抑制后的SAR图像进行处理,改善杂波抑制后的SAR图像中动目标的聚焦情况,增强动目标与周围剩余杂波的对比度,进而提高恒虚警率(CFAR)检测的性能。与传统杂波抑制后直接进行CFAR检测方法相比较,该方法降低了检测虚警概率。实测数据处理结果显示动目标的信杂比明显提高,动目标方位向聚焦成功,证明了该方法的有效性。  相似文献   

15.
A new methodology is presented to retrieve slant-range velocity estimates of moving targets inducing Doppler-shifts beyond the Nyquist limit determined by the pulse repetition frequency (PRF). The proposed approach exploits the linear dependence (not subject to PRF limitations) of the Doppler-shift with respect to the slant-range velocity, at each wavelength. Basically, we propose an algorithm to compute the skew of the two-dimensional spectral signature of a moving target. Distinctive features of this algorithm are its ability to cope with strong range migration and its efficiency from the computational point of view. By combining the developed scheme to retrieve the slant-range velocity with a methodology proposed earlier to estimate the velocity vector magnitude, the full velocity vector is unambiguously retrieved without increasing the mission PRF. The method gives effective results even when the returned echoes of the moving targets and the static ground overlap completely, provided that the moving targets signatures are digitally spotlighted and the signal-to-clutter ratio (SCR) is, roughly, greater than 14 dB. The effectiveness of the method is illustrated with simulated and real data. As an example, slant-range velocities of moving objects with velocities between 6 and 12 times the Nyquist velocity are estimated with accuracy better than 3%.  相似文献   

16.
Acoustic nodes, each containing an array of microphones, can track targets in x-y space from their received acoustic signals, if the node positions and orientations are known exactly. However, it is not always possible to deploy the nodes precisely, so a calibration phase is needed to estimate the position and the orientation of each node before doing any tracking or localization. An acoustic node can be calibrated from sources of opportunity such as beacons or a moving source. We derive and compare several calibration methods for the case where the node can hear a moving source whose position can be reported back to the node. Since calibration from a moving source is, in effect, the dual of a tracking problem; methods derived for acoustic target trackers are used to obtain robust and high resolution acoustic calibration processes. For example, two direction-of-arrival-based calibration methods can be formulated based on combining angle estimates, geometry, and the motion dynamics of the moving source. In addition, a maximum likelihood (ML) solution is presented using a narrowband acoustic observation model, along with a Newton-based search algorithm that speeds up the calculation the likelihood surface. The Cramer-Rao lower bound (CRLB) on the node position estimates is also derived to show that the effect of position errors for the moving source on the estimated node position is much less severe than the variance in angle estimates from the microphone array. The performance of the calibration algorithms is demonstrated on synthetic and field data.  相似文献   

17.
万文娅  孙冲  袁建平 《航空学报》2020,41(12):324041-324041
针对现有空间非合作目标抓捕中存在无固定抓捕点以及待抓捕目标存在动态性等问题,提出了一种"主-从"式多指包络抓捕路径设计算法。首先,为了降低多指包络构型设计中的自由度,将多指机构分为一根主手指和其余从手指两类。然后,为了实现对具有动态性的空间非合作目标的抓捕,采用误差跟踪控制方法使主手指的基关节与包络点之间的运动保持同步。接着,引入单向距离的概念衡量主手指构型和包络边相似度,并利用快速搜索随机树算法寻找使得单向距离最小的主手指关节角取值。进一步,根据多指机构的结构模型,确定其余从手指的构型。最后,根据包络条件选择能够约束住空间非合作目标运动的有效包络构型。通过对可以简化为扁平型的空间非合作目标和一般性三维空间非合作目标这两类目标的包络抓捕仿真可以得出,所设计的算法可适用于一般性空间非合作目标的包络抓捕,同时计算复杂度也大大降低。  相似文献   

18.
Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.  相似文献   

19.
The resolvability of 2-D (two-dimensional) sinusoidal parameter estimates is studied. These sinusoids describe the target features in SAR (synthetic aperture radar) applications. We analyze the resolvability by considering the frequency estimates of the sinusoids. Our results may be used by target classification algorithms to better classify radar targets in SAR applications  相似文献   

20.
We present a new assignment-based algorithm for data association in tracking ground targets employing evasive move-stop-move maneuvers using ground moving target indicator (GMTI) reports obtained from an airborne sensor. To avoid detection by the GMTI sensor, the targets deliberately stop for some time before moving again. The sensor does not detect a target when the latter's radial velocity (along the line-of-sight from the sensor) falls below a certain minimum detectable velocity (MDV). Even in the absence of move-stop-move maneuvers, the detection has a less-than-unity probability (P/sub D/<1) due to obscuration and thresholding. Then, it is of interest, when a target is not detected, to develop a systematic technique that can distinguish between lack of detection due to P/sub D/<1 and lack of detection due to a stop (or a near stop). Previously, this problem was solved using a variable structure interacting multiple model (VS-IMM) estimator with a stopped target model (VS-IMM-ST) without explicitly addressing data association. We develop a novel "two-dummy" assignment approach for move-stop-move targets that considers both the problem of data association as well as filtering. Typically, in assignment-based data association a "dummy" measurement is used to denote the nondetection event. The use of the standard single-dummy assignment, which does not handle move-stop-move motion explicitly, can result in broken tracks. The new algorithm proposed here handles the evasive move-stop-move motion by introducing a second dummy measurement to represent nondetection due to the MDV. We also present a likelihood-ratio-based track deletion scheme for move-stop-move targets. Using this two-dummy data association algorithm, the track corresponding to a move-stop-move target is kept "alive' during missed detections both due to MDV and due to P/sub D/<1. In addition, one can obtain reductions in both rms estimation errors as well as the total number of track breakages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号