首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Obstacle avoidance and path planning for carrier aircraft launching   总被引:6,自引:4,他引:2  
  相似文献   

2.
基于多Agent的舰载机弹射起飞仿真层次模型(英文)   总被引:10,自引:0,他引:10  
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the pro  相似文献   

3.
Simulation-based training is a promising way to train a carrier flight deck crew because of the complex and dangerous working environment. Quantitative evaluation of simulation-based training quality is vital to make simulation-based training practical for aircraft carrier marshalling.This paper develops a personal computer-based aircraft carrier marshalling simulation system and a cave automatic virtual environment(CAVE)-based immersive environment. In order to compare the training effectiveness of simulation-based training and paper-based training, a learning cubic model is proposed and a contrast experiment is carried out as well. The experimental data is analyzed based on a simplified Kirkpatrick’s model. The results show that simulation-based training is better than paper-based training by 26.80% after three rounds of testing, which prove the effectiveness of simulation-based aircraft carrier marshalling training.  相似文献   

4.
The BUAA-BWB remotely piloted vehicle (RPV) designed by our research team encountered an unexpected landing safety problem in flight tests. It has obviously affected further research project for blended-wing-body (BWB) aircraft configuration characteristics. Searching for a safety improvement is an urgent requirement in the development work of the RPV. In view of the vehicle characteristics, a new systemic method called system-theoretic process analysis (STPA) has been tentatively applied to the hazardous factor analysis of the RPV flight test. An uncontrolled system behavior "path sagging phenomenon" is identified by implementing a three degrees of freedom simulation based on wind tunnel test data and establishing landing safety system dynamics archetype. To obtain higher safety design effectiveness and considering safety design precedence, a longitudinal "belly-flap" control surface is innovatively introduced and designed to eliminate hazards in landing. Finally, flight tests show that the unsafe factor has been correctly identified and the landing safety has been efficiently improved.  相似文献   

5.
Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.  相似文献   

6.
An augmented flight dynamics model is developed to extend the existing flight dynamics model of tilt-rotor aircraft for optimal landing procedure analysis in the event of one engine failure.Compared with the existing flight dynamics model, the augmented model involves with more pilot control information in cockpit and is validated against the flight test data. Based on the augmented flight dynamics model, the optimal landing procedure of XV-15 tilt-rotor aircraft after one engine failure is formulated into a Nonlinear Optimal Control Problem(NOCP), solved by collocation and numerical optimization method. The time histories of pilot controls in cockpit during the optimal landing procedure are obtained for the evaluation of pilot workload. An evaluation method which can synthetically quantify the pilot workload in time and frequency domains is proposed with metrics of aggressiveness and cutoff frequencies of pilot controls. The scale of the pilot workload is compared with those of the shipboard landing procedures, bob-up/bob-down and dash/quickstop maneuvers of UH-60 helicopter. The results show that the aggressiveness of pilot collective and longitudinal controls for the tilt-rotor aircraft optimal landing procedure after one engine failure are higher than those for UH-60 helicopter shipboard landing procedures up to the condition of sea state 4, while the pilot cutoff frequency of collective control is lower than that of the bob-up/bob-down maneuver but the pilot cutoff frequency of longitudinal control is higher than that of the dash/quick-stop maneuver. The evaluated pilot workload level is between Cooper–Harper HQR Level 2 and Level 3.  相似文献   

7.
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.  相似文献   

8.
The features of carrier-based aircraft’s navigation systems during the approach and landing phases are investigated. A new adaptive Kalman filter with unknown state noise statistics is proposed to improve the accuracy of the INS/GNSS integrated navigation system. The adaptive filtering algorithm aims to estimate and adapt the unknown state noise covariance Q in high dynamic conditions, when the measurement noise covariance R is assumed to be known empirically in advance. The new adaptive Kalman ...  相似文献   

9.
To satisfy the validation requirements of flight control law for advanced aircraft,a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel.A 3-degree-offreedom gimbal,ventrally installed in the model,was used in conjunction with an actively controlled dynamically similar model of aircraft,which was equipped with the inertial measurement unit,attitude and heading reference system,embedded computer and servo-actuators.The model,which could be rotated around its center of gravity freely by the aerodynamic moments,together with the flow field,operator and real time control system made up the closed-loop testing circuit.The model is statically unstable in longitudinal direction,and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws.The experimental results indicate that the model responds well to the operator's instructions.The response of the model in the tests shows reasonable agreement with the simulation results.The difference of response of angle of attack is less than 0.5°.The effect of stability augmentation and attitude control law was validated in the test,meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.  相似文献   

10.
Flight safety measurements of UAVs in congested airspace   总被引:3,自引:3,他引:0  
《中国航空学报》2016,(5):1355-1366
Describing spatial safety status is crucial for high-density air traffic involving multiple unmanned aerial vehicles (UAVs) in a complex environment. A probabilistic approach is proposed to measure safety situation in congested airspace. The occupancy distribution of the airspace is represented with conflict probability between spatial positions and UAV. The concept of a safety envelope related to flight performance and response time is presented first instead of the conventional fixed-size protected zones around aircraft. Consequently, the conflict probability is performance-dependent, and effects of various UAVs on safety can be distinguished. The uncer-tainty of a UAV future position is explicitly accounted for as Brownian motion. An analytic approximate algorithm for the conflict probability is developed to decrease the computational consumption. The relationship between safety and flight performance are discussed for different response times and prediction intervals. To illustrate the applications of the approach, an experi-ment of three UAVs in formation flight is performed. In addition, an example of trajectory planning is simulated for one UAV flying over airspace where five UAVs exist. The validation of the approach shows its potential in guaranteeing flight safety in highly dynamic environment.  相似文献   

11.
面向机舰适配的舰载飞机起降特性分析   总被引:3,自引:0,他引:3  
机舰适配性是舰载飞机总体设计的核心内容之一,通常包括性能适配和保障适配两部分,是舰载飞机总体设计特有的阶段;其内涵是指舰载飞机充分、高效利用航母的特性,使用其设备和装置的固有能力。以舰载飞机的使用环境为切入点,定义了有人驾驶陆基飞机改舰载机设计所需考虑的机舰适配的诸多方面;以滑跃起飞/拦阻着舰型舰载机为实例,突出性能适配,对滑跃起飞和拦阻着舰的过程进行物理分解,探求舰机以及环境参数对其性能的影响,建立了相关性能的计算方法,并结合国外典型航母的数据进行了计算分析,定量评估了甲板风对滑跃起飞和拦阻着舰的作用。同时,从保证着舰安全性的角度给出了建议的着舰方式、标准拦阻程序和安全逃逸的最短甲板长度需求。最后,给出了滑跃起飞/拦阻着舰飞机设计的关注点。  相似文献   

12.
针对不同舰-机适配条件下舰载机起飞安全性的问题,建立了飞机滑跃起飞动力学分析模型,用数值方法分析了飞机起飞质量、甲板参数、舰船航行速度等因素对飞机滑跃起飞性能的影响。仿真结果表明:舰载机起飞质量增大会减小其离舰爬升率;平直甲板越长或斜甲板出口倾角越大,离舰爬升率越大;但是出口倾角太大时,会使飞机离舰迎角超出限制;增大舰船的行驶速度,可以缩短舰载机起飞所需甲板的长度。  相似文献   

13.
Zhang  Zhang  Zhu  Xu 《中国航空学报》2009,22(4):371-379
In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carrier-based aircraft landing attitude and the damping force acting on landing gears are considered, and the influence of dynamic deck is introduced into the model through the deck normal vectors. The wheel-deck coordinate system is put forward to solve the complex simulation problem of force-on-wheel which comes from the dynamic deck. At last, by simulation, it is demonstrated that the model can be applied to landing attitude when the carrier-based aircraft is landing on the dynamic deck, it is also proved that the model is comprehensive and suitable for any abnormal landing situation.  相似文献   

14.
王永庆  于浩  施岩 《航空学报》2021,42(8):525853-525853
首先介绍了舰载机滑跃起飞技术的概念、现状及发展趋势。然后基于作者在型号研制及试验试飞方面的工作经验,从滑跃起飞过程中的舰载机本体,包括起落架缓冲器、轮胎在内的多体系统运动学与动力学特性出发,分别对影响舰载机滑跃起飞动力学和运动学特性的若干关键因素进行了讨论,这些因素主要包括甲板风场、发动机、起落架、操纵系统和重量特性等。最后通过定性和定量的对比分析结果,从飞机设计与使用两个维度识别出滑跃起飞设计所需重点考虑的影响因素、动力学与运动学成因以及相关设计指标,对滑跃起飞动力学与运动学特性进行了全面的探讨与深层认知。可为从事相关型号的设计、试验及使用的技术人员提供参考。  相似文献   

15.
闵强  王斌团  王亚芳  雷晓欣 《航空学报》2019,40(4):622284-622284
舰载机舰面载荷谱是航母服役环境下飞机结构长寿命和耐久性设计的关键。依据舰载机在拦阻着舰过程中的舰面载荷特点,论述了现有编制方法的局限性,结合多体动力学仿真模型探讨了载荷谱编制的方案和流程,建立了拦阻着舰多体动力学运动方程和仿真模型,并进行了仿真计算。通过对舰载机飞行剖面以及拦阻着舰任务剖面特点分析,确定了飞机拦阻着舰任务段载荷谱的主要工况以及比例关系,编制出飞机拦阻着舰过程的重心谱,绘制出载荷谱超越曲线,为舰载机的设计载荷谱编制提供依据,具有较高的工程应用价值。  相似文献   

16.
舰载机斜板滑跃起飞情况地面载荷   总被引:1,自引:0,他引:1  
设置舰艏斜板以减少舰载机起飞滑跑距离、降低甲板风要求,从而实现无弹射系统情况下的短距起飞作业,这已在一些“蓝水”海军强国的航空母舰上得到了多年应用。给定航母起飞甲板长度和斜板曲线构型,飞机能否成功滑跃起飞取决于它的气动特性、最大起飞质量、发动机推力、出口速度和起落架强度。 本文提出了一种舰载机斜板滑跃起飞情况地面载荷的计算方法,也建立了完整的斜板曲线方程(曲线已经过飞机适配性优化)。文中还应用本方法计算了某双座多用途舰载教练机的滑跃起飞地面载荷。  相似文献   

17.
军用飞机飞行安全的主要影响因素由技术因素向人为因素转变,特别针对舰载机的起降模式、飞行条件和视觉环境等特殊情景下,减少舰载机驾驶舱人为因素导致的飞行事故,对确保完成规定的飞行和作战任务,提高舰载机飞行安全水平具有重要意义。结合舰载机特点,通过对人为因素适航标准包括美军标、国标、国 军标、SAE等标准的分析,提出舰载机驾驶舱人为因素适航设计准则;根据飞机研制阶段的特点,提出基于任务的舰载机驾驶舱人为因素评估方法。该方法可为舰载机驾驶舱人为因素适航评估提供思路和方法。  相似文献   

18.
建立了陆基滑跃起飞动力学模型,并以某型电传操纵飞机为例进行了滑跃起飞仿真计算.分析了在滑跃起飞初始阶段驾驶员预置杆位和飞行控制系统对滑跃起飞的影响.仿真分析结果对驾驶员实际飞行具有一定的参考价值,对完善控制系统设计具有借鉴作用.  相似文献   

19.
One of the most demanding aspects of a Navy helicopter pilot's job is landing his aircraft on the flight deck of a pitching, rolling, heaving and yawing ship. The complex airwake velocity field associated with the ship and aircraft interface directly affects the pilot's ability to control the aircraft during takeoff, approach, hover, landing, and deck operations. Dynamic Interface (DI) testing is performed to define safe aircraft operational envelopes; however, not all conditions can be realized within the limited test period and asset/condition availability. In addition, exact wind conditions that affect the aircraft cannot be measured with existing wind sensors. These sensors measure wind in the ship's mast area which does not represent the wind flow field encountered by the aircraft. A means of non-intrusively measuring the appropriate wind data is required. This paper presents an overview of the unique aspects of the ship/aircraft interface, the overall naval DI environment and the sensor requirements for measuring this complex environment  相似文献   

20.
舰载机前起落架突伸动力学分析及试验方法   总被引:2,自引:1,他引:1  
魏小辉  刘成龙  聂宏  张明  尹乔之 《航空学报》2013,34(6):1363-1369
 为了了解舰载机前起落架突伸试验与实际突伸过程的当量关系,本文以某舰载机为研究对象,建立了全机弹射起飞动力学模型,进行了全机弹射起飞动力学分析,得到了前起落架突伸过程中的动态响应。提出了基于当量质量的前起落架突伸动力学试验方法,设计了试验方案,建立了前起落架突伸动力学试验分析模型,进行了突伸动力学分析。进而依据全机突伸动力学分析结果,对基于当量质量的前起落架突伸动力学试验中相关参数的选取进行了探讨研究,结果表明:当突伸当量质量系数取0.8时,突伸动力学响应特性与全机弹射起飞突伸过程的动态响应结果比较吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号