首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
45钢低温加稀土粉末渗硼研究   总被引:6,自引:0,他引:6  
研究了45钢低温加稀土粉末渗硼的组织和性能,结果一,参硼剂中活化剂数量和种类的增加,可以降低稀土的分解温度,在低温下,稀土仍具有较明显的催渗作用,并且能够提高渗硼层的耐磨性。  相似文献   

2.
活化剂添加量对钢低温渗硼的影响   总被引:1,自引:0,他引:1  
低温渗硼是一种非常有效的表面强化工艺,由于渗硼过程是在材料的AC1进行,故可以大大减小被处理工件的变形。此工艺对于结构复杂、型腔小、精度要求高的模具特别适用。本文研究了低温粉末渗硼剂中主要活化剂硫脲、氟化钠、氯化铵的添加量对低温渗硼组织与性能的影响,从而确定出合适的活化剂添加量。结果表明:只要低温粉末渗硼剂中硫脲、氟化钠、氯化铵的添加量合适,便能共同作用提高渗速,使渗层均匀、致密,从而提高渗层的耐磨性。  相似文献   

3.
本文通过团体粉末渗铌试验,分析了渗剂成分、渗入时间与温度对不同材料渗层的影响,研究与探讨了渗层的组织和性能。对45钢、T10钢、9CrSi钢和GCr15钢等材料采用铌铁粉末进行的渗铌处理,均可形成一定厚度的铌渗层,且表层硬度提高很多,摩擦力矩数值反映渗铌后摩擦系数减少。  相似文献   

4.
稀土对45钢软氮化性能的影响   总被引:2,自引:0,他引:2  
研究了稀土对45钢气体软氮化性能的影响,主要包括稀土对45钢气体软氮化渗层的深度、硬度分布、显微组织以及炉内气氛压力的影响。实验结果表明:在相同工艺条件下,渗剂中加入一定浓度范围的稀土,有利于炉内气体渗剂的加速分解而使炉内气氛压力升高,加速了45钢气体软氮化过程的进行,提高了渗层的深度和硬度,改善了渗层的组织。  相似文献   

5.
研究了稀土对45钢气体软氮化性能的影响,主要包括稀土对45钢气体软氮化渗层的深度,硬度分布,显微组织以及炉内气氛压力的影响,实验结果表明,在相同工艺条件下,渗剂中加入一定浓度范围的稀土,有利于炉内气体渗剂的加速分解而使炉内气氛压力升高,加速了45钢气体软氮化过程的进行,提高了渗层的深度和硬度,改善了渗层的组织。  相似文献   

6.
对W18Cr4V钢进行了稀土硫氮碳共渗研究。采用光学显微镜、X射线衍射仪、电子探针等对共渗层的组织和结构进行了分析,并对渗层的硬度和耐磨性进行了测量。结果表明:W18Cr4钢经稀土硫氮碳共渗后表面形成了FeS,Fe3(CN)等化合物,稀土共渗提高其硬度和耐磨等性能。  相似文献   

7.
研究了稀土元素对钢渗碳过程的影响。试验结果表明,无论采用固体或气体法,稀土元素对钢的渗耐烦过程都有明显的催化作用渗速提高20-30%,电子探针测定证实稀土元素La、Y和Ce等被渗入钢的表面。本文还讨论了稀土对渗碳的催渗过程与机理。  相似文献   

8.
采用双辉等离子渗金属技术在钨表面进行渗镍实验,并采用XRD,SEM,EDX等分析手段对渗镍试样的微观组织进行了表征。结果表明,镍改性层与基体结合良好,无明显缺陷。改性层与基体表面之间存在明显的扩散层,扩散层中存在少量NiW和Ni4W中间相。利用划痕法研究了渗镍层与基体间的结合强度。结果表明:持续加载100 N未发生改性层剥落现象。对钨表面双辉等离子渗镍改性层的形成机制进行了探讨。  相似文献   

9.
纯Ti及Ti-6Al-4V双层辉光离子渗Mo   总被引:4,自引:1,他引:4  
针对钛(T i)合金存在的耐磨性较差的问题,采用双层辉光离子渗金属技术,在工业纯T i和T i合金T i-6A l-4V合金表面渗钼(M o),制备出T i-M o合金层。渗层组织为-βT i(M o)固溶体,成分及硬度均呈梯度分布。利用划痕法研究了渗层与基体间的结合强度,结果表明:渗M o后,持续加载100 N未发生渗层剥落现象;球盘磨损实验表明,T i-6A l-4V渗M o后,比磨损率降低为基体材料的1/500。磨损性能的提高得益于表面合金层中M o元素固溶强化而产生的高硬度。  相似文献   

10.
利用双辉等离子渗金属技术和多弧离子镀技术在TC21钛合金表面制备了Al Cr复合涂层,并于750,850,950 ℃下进行了抗高温氧化性能研究。结果表明:Al-Cr涂层分为纯Al层、AlCr合金层、纯Cr层及扩散层,厚度约为48 μm,涂层连续致密、无贯穿性裂纹,并且与基体结合紧密。氧化过程中,Al Cr涂层表面能形成致密的Al2O3氧化层,阻止O元素向内扩散侵蚀基体,使涂层具有优异的抗高温氧化性能;Cr的存在既促进了Al的选择性氧化,同时又使得涂层的自修复能力得到增强。Al Cr复合涂层显著提高了TC21合金的高温抗氧化性。  相似文献   

11.
研究了流变铸造法制备的Al2O3P/Zn-Al复合材料硬度和耐磨性能。结果表明Al2O3P的加入,提高了Zn-Al合金的室温和高温硬度,改善了其耐磨性能。颗粒体积含量增加,或者颗粒粒径的减小都将提高该复合材料的硬度和耐磨性,而试验温度的增加会引起其硬度的迅速降低。不过,Al2O3P的加入显著改善了Zn-Al合金耐高温性能。此外,文中还研究了淬火、回火或循环热处理对该复合材料硬度值的影响。  相似文献   

12.
本文采用压铸法制备了三维连续网状多孔陶瓷增强铝基复合材料,研究了其在干滑动摩擦条件下的磨损行为。结果表明,复合材料的耐磨性优于铝合金,网络孔径越小,复合材料的耐磨性越好。  相似文献   

13.
纳米高岭土增强PTFE复合材料的摩擦磨损特性   总被引:5,自引:0,他引:5  
采用纳米高岭土颗粒增强聚四氟乙烯(Po lytetrafluoroethy lene,PTFE),通过熔融插层工艺,制备了不同重量分数的纳米高岭土增强PTFE自润滑复合材料,摩擦磨损实验在往复式滑动摩擦实验机上进行。实验条件:接触压力为5.5M Pa,往复频率为1 H z,往复行程为1.5 mm。实验结果表明:在重载低速的条件下,这种新型的自润滑材料在稳定阶段的摩擦因数在0.07~0.19的范围,填充后的PTFE复合材料的耐磨性显著提高,其中含10%高岭土的PTFE复合材料的表现最佳,比纯PTFE提高了大约54倍。纳米高岭土提高PTFE耐磨性的主要原因是:其层片结构间被PTFE分子链插入,达到了增强基体并阻止PTFE成片剥落的目的。  相似文献   

14.
本研究有用廉价硅锰元素为主加元素开发铸态或空冷可获得贝氏体组织的耐磨钢,并对其机械性能和组织结果进行了分析测试,结果表明,该钢在获得高硬度高强度的同时有较高的韧性,所获得的贝氏体组织中的铸素体板条含有的过饱和碳和高密度原位错,板条间分布着高碳的奥氏体膜,用该钢制造的耐磨件工业应用表明比传统高锰钢和白口钎铁有更高的耐磨性,文章还对新钢种具有高的抗冲击磨粒磨损抗力原因进行了探讨。  相似文献   

15.
采用IPG YLS-6000型 大功率光纤激光器在42CrMo合金表面制备Ni包WC涂层,研究激光功率对涂层组织及性能的影响。研究表明:随着激光功率的增大,涂层组织呈粗化趋势;且在激光功率的增大过程中,涂层中WC颗粒逐渐分解为Fe-C化合物,硬度逐渐减小;当激光功率为1 800 W时,显微硬度达到最大值1 050 HV;Ni包WC涂层显著提高了基材的耐磨性,在同等磨损条件下,涂层的磨损量仅为基体试件的1/5,但激光功率对涂层磨损量的影响不大。  相似文献   

16.
本文研究了网络陶瓷增强铝基复合材料在干滑动摩擦条件下的磨损行为,并在大量试验基础上建立了复合材料的磨损模型。结果表明:复合材料的耐磨性明显优于基体合金,其主要原因是增强体独特的网络结构可制约基体合金的塑性变形,并减少对偶件同基体合金的接触,从而有效地增强了复合材料的耐磨性能;从复合材料的磨损率方程中发现,在三个影响因素(载荷、转速、时间)中,转速对磨损率的影响最大,载荷次之,时间最小;磨损率方程的预测值与实测值符合的很好,建立的磨损模型符合实际磨损状况。  相似文献   

17.
研究了CU-1型钇基重稀土对Be-Cu合金性能的影响。结果表明:Be-Cu合金经过微量CU-1型稀土的微合金化处理后,其显微硬度、耐磨性和耐腐蚀性均有不同程度的提高,热膨胀系数有所下降;随着稀土加入量的增加,Be-Cu合金的显微硬度逐渐提高,磨损量和平均腐蚀速率逐渐降低,热膨胀系数先减小后增大。  相似文献   

18.
本文采用真空液态渗透法制备了碳/锌复合材料。拉伸和磨损试验表明:碳纤维的加入,明显提高了锌以及锌合金的抗拉强度,改善了锌合金的摩擦磨损特性。用S-570扫描电镜观察了碳/锌复合材料的拉伸和冲击断口,以及碳/锌复合材料的磨损表面,并用X-射线能谱仪对断口进行了分析。此外,本文还对碳/锌复合材料的纵向拉伸性能、纵向冲击性能以及摩擦磨损性能的影响因素进行了讨论。  相似文献   

19.
为了提高TiAl合金耐磨性能,采用等离子喷涂和激光重熔复合工艺在TiAl合金表面制备了Al2O2-13% TiO2(质量分数)复合陶瓷涂层.用扫描电镜(SEM)和显微硬度计分析了涂层微观结构和显微硬度,同时对涂层的磨损特性进行了考察.结果表明,经过激光重熔处理后,陶瓷涂层颗粒细化,片层状组织得以消失,致密性提高,获得了基本没有裂纹等缺陷的重熔层.由于陶瓷材料导热系数较低的影响,激光重熔时无法使整个陶瓷层实现重熔,重熔后的陶瓷涂层形成了晶粒细小的等轴晶重熔区、烧结区以及片层状残余等离子喷涂区.激光重熔处理后涂层的显微硬度明显提高,其耐磨性能也明显优于原等离子喷涂层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号