首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally. It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency. The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth. Mean-while, experimental result also shows that the surface disturbance wave changes the frequency of flapping motion, i.e. the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency.  相似文献   

2.
The motion of a lure in water is investigated experimentally and numerically. The lure motion in water of a passing water tank is observed, and the periodic motion is/ound. From the Fourier analysis, it is found that the frequency with the largest amplitude in the lateral direction depends on the lip width of the lure. To understand the lure dynamics, a numerical simulation of the flow field around the lure is performed. The shape is measured using an X-ray computer tomography and converted into a voxel model. From visualization, it is found that vortex sheds from its lip correspond to the vibration frequency of the lure.  相似文献   

3.
The injection characteristics of the main fuel nozzle, which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet into cross-flow. In this study,a nozzle with a diameter of 0.4 mm is designed and processed through the heating of the inlet air,and the vaporization characteristics are investigated. The optical measurement and cyclone separation methods are separately used to investigate the evaporation rate of a jet into cross-flow. Experimental results show that the fuel evaporation rate in cross-flow is mainly affected by the Weber number(We),equivalent ratio(φ),momentum rate of fuel to air(q),and air temperature. In addition,the inlet temperature is a crucial factor for the evaporation ratio of a jet into cross-flow. The evaporation results measured by two different methods in the same cross-flow are very close to each other with a deviation within 10%.  相似文献   

4.
Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is analyzed in time and frequency domains.An increase in the amplitude of SAW at the edge of the defect is observed,and the spectral feature is angle dependent.With the angle decreasing from 120°to 30°,the maximum amplitude of frequency spectrum of SAW increases gradually.The corresponding experimental results verify the feasibility of numerical analyses and reach a good agreement with simulation results.  相似文献   

5.
In laser milling assisted with jet electrochemical machining (LMAJECM), the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte, which focuses optical energy on the surface of work- piece. The impact of jet of electrolyte develops a state-of-art work to perform operations such as electrolytic etch- ing, effective cooling, and transportation of debris. Therefore, a special jet cell is designed to obtain stable jet as to be a kind of noneontact tool, i. e. , electrode. According to the theoretical model of on-off pulse time process, laser machining and electrolytic anodization are simulated by finite element analysis (FEA) method. Grooves on a 0.5 mm thick 321 stainless steel sheet produced by LMAJECM is performed with pulsed Nd:YAG laser at the second harmonic wavelength. Compared with laser milling under ambient atmosphere conditions, the recast layer and burrs are effectively diminished. And the accuracy of depth is dedicated to laser milling, whilst that of width is dominated by jet electrochemical machining. It is demonstrated that LMAJECM can be a highly potential approach for fabricating 3-D micro components.  相似文献   

6.
For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.The steady flow is calculated by computational fluid dynamics(CFD)method,while the stochastic flow is composed of the compensation velocity derived from ship motion and turbulence above the deck.The accuracy of the proposed flow field model is verified by comparing the helicopter response in the proposed flow field with the results calculated by US Army′s Military Specifications(MIL)model which is commonly used in engineering.Meanwhile,it also shows the proposed flow field model is more appliable to flight dynamics analysis of shipborne helicopter.On that the basis,ship deck flow field is simulated at different sea conditions by adjusting the wind speed on the deck,mother ship movement and shipboard turbulence,etc.And helicopter angular rate response is calculated.The results show that the difference of dynamic stability between helicopter′s roll and pitch leads to the facts that the influence of above factors on the helicopter′s roll angular rate response is greater than that of pitch angular rate,that the frequency and amplitude of mother ship roll motion are much greater than those of pitch motion,and that the disturbance caused by roll motion on the air has greater influence on the helicopter response.The shipboard turbulence is the main disturbance factor that influences helicopter flight stability and its intensity determines the amplitudes of angular rate response.  相似文献   

7.
A dual-jet consisting of a wall jet and an offset jet has been numerically simulated using lattice Boltzmann method to examine the effects of jet spacing between two jet centerlines,defined as s.The Reynolds number based on jet-exit-width dis set to be Re = 56 and the jet spacing is set to be less than or equal 10 times the jet-exitwidth.Computational results reveal that the flow field displays periodic vortex shedding when the jet spacing is in the range of 9≤s/d ≤ 10,while it remains steady with two counter-rotating vortices in the converging region when s/d ≤ 8.When s/d = 9,the power spectral analyses indicate that the vortex shedding phenomenon has specific frequency.The significant oscillation stresses induced by the periodic components of velocities are found to mainly exist in the inner shear layer regions,implying stronger momentum transfer occuring in these regions.  相似文献   

8.
Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferroelectric-single-crystal cymbal actuator and a miniature piezoelectric friction-inertial linear motor(abbreviated as PFILM)fabricated with the cymbal actuator.The cymbal actuator is fabricated with a 10 mm diameter disk of 0.70Pb(Mg_(1/3)Nb_(2/3))O_3-0.30PbTiO_3 single crystal.The displacement of the cymbal actuator increases almost proportionally from 0to 23μm with driving voltage up to 500 V,and the minimal hysteresis is observed.The cymbalPFILM with 20 mm motion range works under driving voltage frequency of ca.100 Hz to ca.5kHz,the fastest speed is obtained with 3.5kHz and the no-load speed is 14mm/s and the maximum thrust force is 98 mN.Compared with a PFILM based on multilayer piezoelectric ceramic,the proposed motor has a larger stroke under DC/quasistatic input voltage in fine motion mode,but a smaller driving force in long-travel mode due to lower resonance frequency.  相似文献   

9.
This study takes the novel approach of using a counterflowing jet positioned on the nose of a lifting-body vehicle to explore its drag reduction effect at a range of angles of attack.Numerical studies are conducted at a freestream Mach number of 8 in standard atmospheric conditions corresponding to the altitude of 40 km.The effects of jet pressure ratio and flying angles of attack on drag reduction of the model are systematically investigated.Considering the reverse thrust generated from the counterflowing jet,the drag on the nose at hypersonic speeds could be reduced up to 66%.The maximum lift-to-drag ratio of the model is obtained at 6°;meanwhile,the counterflowing jet produces a drag reduction of 8.8%for the whole model.In addition to the nose,the counterflowing jet influences the drag by increasing the pressure drag of the model and reducing the skin friction drag of the first cone within 8°.The results show that the potential of the counterflowing jet as a means of active flow control for drag reduction is significant in the engineering application on hypersonic lifting-body vehicles.  相似文献   

10.
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.  相似文献   

11.
A new closed-loop driving scheme for the silicon micromachined vibratory gyroscope (SMVG) is proposed. The push-pull driving is adopted and in-phase AC and reverse-phase DC voltages are applied in the driving electrodes placed in both sides of the active combs, respectively. Driving performance analyses show that the frequency spectrum between driving moments and noise signals is separated. Therefore, the model of the closed-loop control is set up with the phase lock loop (PLL). The requirements for phases and gains of the sinusoidal selfdrive-oscillation are met by PLL, thus the closed-loop circuit reaches the self-drive-oscillation. Phase conditions of the sinusoidal self-drive-oscillation and the characteristic of phase discrimination of the PLL are used to eliminate the coupling between driving and sense signals, and noise signals. Finally, experimental results show that the variations of both the driving frequency and the amplitude are all under 0.02%. The precision and the reliability of the gyroscope are greatly improved.  相似文献   

12.
The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM) and contact angle (CA) system. The SEM images show that there is a three-layer structure called the reaction, virgin and boundary layer structure. The depth of fluorinated layer is 5.75 ~m with 1 h fluorination time and 7.86 b~m with 2 h. The depths are 5.46 /~m and 5.07 /~m when fluorine density is 2G and 1~/0, respectively. CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5~ to 104.5~. Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments. It is shown that the in- crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel.  相似文献   

13.
A novel double-foot piezoelectric linear motor is proposed.The kinematic model of the motor under stepping motion is presented.The motor mainly consists of a stator with four piezoelectric stacks,a mover,a holding mechanism,and a preloading mechanism to achieve large stroke with high resolution.Finite element simulations are carried out to analyze the motion characteristics of the motor.A prototype is fabricated and a serial experiments are conducted to validate the feasibility of the motor principle.Experimental results indicate that the motor can move at a speed of 670.22μm/s with a driving frequency of 120 Hz and a voltage of 120 V.The resolution of the proposed motor is 3.6μm while the resolution of the single-step motion is 0.1μm.  相似文献   

14.
In order to obtain accurate conflict risks in terminal airspace design, the concept and calculation model of potential conflict frequency for intersected routes are proposed. Conflict frequency is represented by the product of horizontal conflict frequency and vertical conflict probability. The horizontal conflict frequency is derived from the probability density distribution of conflicts in a period of time. Based on the recorded radar trajectory data, the concept and model of ROUTE distance are proposed, and the probability density function of aircraft height at a specified ROUTE distance is deduced by kernel density estimation. Furthermore, vertical conflict probability and its horizontal distribution are achieved. Examples of three intersected arrival and departure route design schemes are studied. Compared with scheme 1, the conflict frequency values of the other two improved schemes decrease to 53 % and 24%, respectively. The results show that the model can quantify potential conflict frequency of intersec ted routes.  相似文献   

15.
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.  相似文献   

16.
The existing resonant linear piezoelectric motors must operate with high working voltage in resonant condition,resulting in their narrow operating frequency range and poor running stability.Here,with the large displacement output characteristics of piezoelectric stacks,the trajectory at the drive foot of stator is firstly produced with two space quadrature piezoelectric actuators excited by sawtooth wave and square wave.Secondly,the friction drive principle of motor is used to analyze the working mechanisms of the continuous stepping motion.Finally,the motor prototype is designed and experiments are carried out.The experimental result shows that the motor can stably operate within the scope of 350 Hz to 750 Hz.When the excitation voltage is 30 Vand pre-load is 3Nor10 N,the lateral amplitude of the drive foot is approximately 4μm and the stable average interval ranges from3.1μm to 3.2μm with the error rate of 5%—7.5%.  相似文献   

17.
The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.  相似文献   

18.
In this paper damage assessment based on guided elastic wave propagation phenomenon is presented.Guided waves are generated by piezoelectric transducer and registered by scanning laser doppler vibrometer(SLDV).Signal processing is based on the analysis of full wavefield measurements gathered from dense mesh of measurement points spanned over area of investigated samples.Full wavefield measurement approach allows creation of animations presenting the guided wave propagation in the structure.Moreover such approach is suitable for analysis of interaction of guided waves with discontinuities located in structure.In the research attention is paid especially on analysis of phenomenon of S0/A0′guided wave mode conversion due to interaction with investigated discontinuities-teflon inserts and impact damage.The presented work is related to glass fibre reinforced polymer(GFRP)samples.In the research,auxiliary non-destructive testing(NDT)method is also utilized.The aim of this method is to indicate the depth of discontinuity,and to prove that delamination was created in the case of impact damage.Auxiliary method is based on terahertz spectroscopy(THz)where the analysis of propagation of electromagnetic waves in the terahertz band is conducted.THz spectroscopy method can be utilized for damage assessment in the dielectric materials like GFRP.  相似文献   

19.
Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.  相似文献   

20.
The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号