首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对在建的高亚声速结冰风洞,用数值方法研究了风洞的部段损失.利用CFD技术,数值模拟了不同设计状态下风洞收缩段、试验段、扩散段的损失,并与试验结果进行对比,分析了扩散角对扩压损失的影响.对扩散段进行了优化设计改造,成功达到了风洞性能指标.研究结果表明:利用数值模拟方法,可以方便地进行各种设计方案的损失比较,既经济便捷又可靠,在风洞设计中可大力推广.  相似文献   

2.
布置有多层孔板(丝网)的大开角扩散段通过参数的优化设计,可有效缩短暂冲式风洞启动时间,均匀进入稳定段的气流速度,并降低阀后噪声和气流脉动.针对某大型暂冲式风洞大开角扩散段设计关键技术开展专题研究,设计并进行了不同扩散段扩开角角度和中心体分流锥型式的组合实验,从压力损失、出口截面速度分布和降噪特性三个方面进行了对比分析.试验结果表明:试验件45°扩开角+65°平底锥的压力损失相对最小,而增加导流尾锥的中心分流锥由于底部难以形成稳态的分离涡使得其压力损失明显偏大,其它试验件组合的压力损失值则相接近;各试验件出口截面的速压分布均呈现以中轴线对称分布的双驼峰趋势,且孔板的开孔率偏高时出口剖面速度分布相对更平滑;试验马赫数下的大开角段对气流噪声的消声量约为12~14dB,对频率在2kHz以上的气流噪声具有相对较强的消声能力,同时气流经过设置有多层孔板的大开角扩散段后,气流波动幅值明显降低,气流脉动得到有效地抑制.  相似文献   

3.
随着我国自主研发大飞机项目的启动,对相应的高性能大型连续式跨声速风洞这一基础试验平台建设提出了日趋紧迫的需求.大开角扩散段在减小风洞尺寸的同时会引起气流分离,扩散段形状和内部整流装置的合理设计有着重要的意义.首先阐述大开角扩散段在连续式跨声速风洞中的作用,然后介绍了大开角扩散段在国外连续式风洞中的应用情况、布置位置和整流方式,主要分析比较目前几种大开角扩散段内阻尼网的设计方法,总结出一种最为优化的设计方案.最后对国内大型连续式跨声速风洞大开角扩散段的设计提出了几点建议.  相似文献   

4.
运用时间相关的全隐AF方法,计算二维及轴对称亚声速高速扩散段内流场。流动控制方程使用全N-S方程。湍流模型选择了Baldwin-Lomax代数湍流模型,和两层κ-ε二方程模型。经过同国外实验结果的比较,证明本文计算结果合理。在此基础上,计算了中国气动力研究与发展中心2.4m×2.4m引射式跨声速风洞第二扩散段在不考虑喷流干扰及常规运行状态下的流场。  相似文献   

5.
通过相似性分析,得到了大气污染建筑物影响风洞试验应满足的基本相似条件.由一个实例研究了利用常规风洞模拟装置和测试仪器进行大气污染建筑物影响风洞试验在技术上的可行性.结果显示:由于模拟装置和仪器条件的限制,在大多数风洞试验中存在大气边界层不完全模拟和仪器响应过慢等问题,但通过合理模拟来流的主要湍流特征和改进采样方法,可以在风洞中较真实地模拟建筑物对大气扩散的影响.  相似文献   

6.
采用k-ε(RNG)与LES湍流模型在来流与建筑物迎风侧呈不同角度的情形下,模拟了位于立方体建筑物顶部污染源所排放污染物的流动和扩散规律,并与相应的风洞试验结果进行了比较.流场分析结果表明:数值模拟能够较好地模拟建筑物顶部回流、背风侧空腔区以及再附着点等.浓度场分析结果表明:来流与建筑物成45°时,建筑物顶部回流区与背风侧空腔区的数值模拟结果略低于风洞试验结果;来流与建筑物成90°时,建筑物顶部回流区数值模拟结果略高于风洞试验结果,而背风侧空腔区的数值模拟结果与风洞试验结果基本一致.综合分析表明:建筑物周围的流场影响浓度场的分布,LES、k-ε(RNG)模型都能够较好地模拟建筑物周围的流动和扩散规律,两种模型相比,LES模型与风洞试验吻合得更好.总之,风洞试验和数值模拟相结合能较好地研究建筑物对流动和扩散的影响.  相似文献   

7.
利用大涡破碎器(LEBU)测量和考察了跨越平板湍流表面边界屋的速度型和动量厚度沿展向的分布,结果表明,LEBU的存在有可能扩大了层内流动参数沿展向的非均匀性;此外,还介绍了一个两对反向旋转的纵向涡模型,真实存在于风洞的横截面上,影响了展向非均匀性。使用本文介绍的一种沿展向非均匀性处理方法,对表面湍流摩阻估算的结果与使用摩擦阻力天平直接测量的结果基本一致。  相似文献   

8.
低速高湍流度90°弯管流动数值模拟   总被引:3,自引:0,他引:3  
分析了曲率对弯曲管道流动的影响 ,给出了曲率修正的双层 k-ε湍流模型 ,并数值模拟了非均匀来流低速高湍流度 90°弯管内流动。文中比较了曲率修正双层 k- ε湍流模型的计算结果与实验结果 ,以及双层 k- ε湍流模型和逆压力梯度修正双层 k- ε湍流模型的计算结果。通过比较 ,发现经过曲率修正后的双层 k- ε湍流模型更好地模拟了非均匀来流低速高湍流度 90°弯管内流动。同时比较了壁面参数的插值方法 ,发现在弯曲管道流动模拟中对壁面参数进行一阶插值比零阶插值能更好地模拟真实流场  相似文献   

9.
为满足未来先进航空航天型号的发展需求,我国逐步展开了大型跨声速风洞建设工作;由于过去从未开展过大型连续式跨声速风洞建设,建设经验较为有限。连续式风洞压力损失估算及各部段气动参数计算是风洞结构、测控系统和动力系统设计的输入条件;压力损失估算结果的准确性,直接影响了风洞动力系统设计的难度。本文结合经典的压力损失计算方法,针对损失的关键部位,结合CFD数值模拟及缩比部段试验结果进行全面的分析,给出了特殊部段尤其是试验段的损失系数,并通过多次迭代计算的方式,给出了各部段气动性能。最后,将风洞压力损失估算值与某0.6 m量级连续式跨声速风洞试验结果进行对比,估算偏差在7.5%以内。  相似文献   

10.
蜂窝器是安装在风洞稳定段中用来提高风洞试验段气流均匀性、降低气流偏角及湍流度的重要整流装置。普通的实壁蜂窝器需要通过提高蜂窝器单元的长径比来达到提升整流特性的目的,但同时带来了损失系数增加等问题。设计了一种在蜂窝单元壁面开孔的蜂窝器,通过蜂窝器壁面上的开孔,实现了蜂窝器单元之间的旋涡和压力的传递,可以有效地提高蜂窝器的整流效果。在0.55m×0.4m低噪声航空声学风洞闭口试验段中,在不同来流速度条件下,使用热线风速仪对普通蜂窝器和开孔壁蜂窝器下游的速度及湍流度分布特性进行了试验研究。实验结果表明,与普通的实壁蜂窝器相比,开孔率为50%的开孔壁蜂窝器下游的湍流度可降低13.8%,蜂窝器下游的速度分布得到了改善,局部气流偏角也明显减小。在风洞设计中,使用优化后的开孔壁蜂窝器可以减少阻尼网的层数或收缩段的收缩比,从而降低风洞的运行能耗,并减少风洞的建设费用。  相似文献   

11.
扩压器是超/高超声速风洞的关键部件之一,直接影响风洞运行的费效比。然而,对于高超声速低密度风洞而言,试验运行参数范围大、试验气体密度又相对较低,常规的"收缩段-等直段-扩张段"的扩压器结构扩压作用不明显。提出一种带中心锥型扩压器新结构,并在Φ300 mm高超声速低密度风洞中进行扩压性能试验。研究了M16喷管小流量稀薄状态和M8喷管大流量近连续流状态下带中心锥型扩压器的扩压性能,同时,分析了试验段模型对扩压器扩压能力的影响。结果表明带中心锥结构的扩压器适用的风洞运行参数范围更广、扩压性能更优,能有效提高设备试验能力,可为高超声速风洞扩压器设计提供参考。  相似文献   

12.
低温风洞降温过程中,温度变化范围大,容易在结构内部引发较大热应力,影响设备运行安全。以中国空气动力研究与发展中心0.3m跨声速低温风洞扩散段为研究对象,基于流固热耦合方法,采用多物理场数据交换接口MpCCI,联合结构有限元软件Abaqus和计算流体动力学软件Fluent,建立扩散段的流固热耦合仿真模型,分析低温内流场的换热特性,计算低温风洞结构的温度及应力分布。通过低温风洞试验发现,流固热耦合仿真结果接近于实际的测量结果,能够准确反映低温风洞结构的热力学特性,可为低温风洞的结构安全性能优化提供可靠的仿真分析方法。  相似文献   

13.
扩压器是高超声速风洞的关键部件,主要作用是提高出口气流的静压。在某高超声速风洞扩压器上布点测量壁面静压和近壁面皮托压力,并在出口布置尖劈测量出口气流参数,评估扩压器的性能。结果表明:扩压器内的核心流区由于存在逐步衰减的激波-膨胀波系,使气流出现“减速-加速-再减速-再加速”的流动过程;该扩压器能保证风洞正常启动以及试验段流场不受背压的影响;该扩压器的效率与国外类似风洞扩压器效率相当,前室总压较低时,扩压器能起到良好的减速增压的效果,前室总压较高时,扩压器增压效果不明显,扩压器出口气流马赫数偏高。  相似文献   

14.
低温风洞运行过程消耗大量液氮和电力,洞体结构产生附加热应力和热变形,建立可靠的低温风洞热力学模型对研究风洞运行安全性和经济性是必不可少的。以低温风洞扩散段为方法研究对象,建立有限元热力学模型,为提高热力学模型和实际模型的相关性,使用响应面法对有限元热力学模型多个参数进行修正。通过对比分析温度、应力监测点试验数据和仿真数据的差别,确定驻室锥形体内表面对流换热系数为待修正参数;使用中心复合试验设计生成有限元热分析样本空间,以温度、应力监测点试验数据和仿真数据的残差均方和为考核指标,在样本空间内对残差均方和进行非线性回归分析,建立残差均方和的响应面模型;以所有监测点残差均方和总和为目标函数,在样本空间内进行多目标非线性优化分析,得到最优解;验证修正后的热力学模型,结果表明:(1)基于响应面法的热力学模型修正是可行的;(2)修正后的热力学模型分析数据与试验数据吻合性提高,并且适用于其它降温试验。  相似文献   

15.
临界压力是暂冲式高超声速风洞实验段流场破坏时真空罐中的压力值,临界压力比影响Ma10以上大型高超声速风洞真空系统的设计。在Φ0.3m高超声速低密度风洞中进行了Ma10以上喷管的实验,测量了风洞实验段静压、流场的皮托压力、扩压器内表面前后压力、真空罐压力等参数,了解了各部位流场随真空罐压力升高的变化过程,获得了现有风洞Ma10、Ma12和Ma16各自的流场维持所需临界压力比分别为0.34、0.35和0.5。采用FASTRAN软件模拟了风洞流场建立到破坏的非定常过程,计算结果与实验结果较为一致。临界压力比的获得为类似大型高超声速风洞真空系统设计提供了关键基础数据。  相似文献   

16.
风洞收缩段曲线气动性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了一种新的风洞收缩段曲线的设计方法,即UG参数化收缩段壁型曲线设计.采用商用软件fluent对这种收缩段曲线性能进行数值模拟计算,获得了好的流场品质,对于风洞的设计以及流动优化提供了新的设计思想.在模拟计算的基础上应用了该研究成果加工制造了一座低速风洞,并对风洞流场进行了校测,对比了模拟计算结果与实验测量结果,并进行了流场性能分析.该设计方法可以应用推广到风洞设计工作中去.  相似文献   

17.
针对2.4m风洞第一扩散段在运行过程中出现的裂纹现象,应用振动测试技术和有限元分析方法,进行了不同工况条件下振动测量和脉动压力测量,获得了结构在气流脉动压力作用下的主要振动频率范围.通过与有限元分析结果验证对比,诊断出了第一扩散段产生裂纹的原因在于内壳体裂纹板与气流长期耦合振动,结构疲劳从而导致出现裂纹.最后在此基础上提出了合理的整改方案,对结构进行了动力学修改.结果表明:结合振动测试,基于有限元法对风洞结构进行故障诊断是一种行之有效的方法.  相似文献   

18.
阵风发生器是阵风响应风洞试验的关键设备。针对叶片式阵风发生器的运行特点,通过简化的定常涡升理论,推导出阵风发生器下游流场Y向风速的计算公式。以0.55 m×0.4 m低速风洞(声学引导风洞)为实验平台,系统地研究了阵风发生器的设计参数(叶片弦长、数目、间距)和运行参数(叶片摆幅和摆动频率、来流速度)对阵风流场风速极值的影响。研究表明:推导的简化公式能够解释阵风发生器各设计和运行参数变化后,其下游流场Y向风速的变化机制,可在阵风发生器设计时对其产生的阵风流场进行简单预估;从增大阵风发生器下游流场Y向速度极值的角度出发,增加叶片数目比增大叶片弦长更能增大Y向速度;在叶片失速前,增大叶片摆幅比增大叶片摆动频率更能增大Y向速度;采用多组叶片的阵风发生器,叶片间距不能太小,否则会导致等效升力系数下降,当叶片间距为1.2倍弦长时,能够获得最大的Y向速度极值。本文研究工作可为其他风洞的阵风发生器设计提供参考。  相似文献   

19.
采用基于法布里-珀罗干涉仪的干涉瑞利散射测速技术在Φ0.3m高超声速低密度风洞中进行了Ma5、Ma6、Ma12的流场速度和湍流度的测量,了解了瑞利散射速度和湍流度测量系统在高超声速流场中应用的情况,结果表明目前该风洞流场湍流度在1%以内,速度测量结果与流场校测偏差最大1.3%;对激波后返回舱模型绕流速度进行了测量,Ma6来流的测量结果与数值模拟结果吻合较好,而Ma12来流的测量结果与数值模拟结果相差69%,对原因进行了分析。在实验中发现目前Φ0.3m高超声速低密度风洞的流场存在一定程度的冷凝现象,并对后续研究工作提出了建议。  相似文献   

20.
为满足中国空气动力研究与发展中心的2.4m跨声速风洞流场品质改进的需要,有必要建立一个高效的风洞流场控制模型作为控制器设计的验证平台。由于难以建立精确的空气动力学模型,且2.4m 跨声速风洞长期运行积累了大量的试验运行数据的实际,数据建模成为建模方法的首选。在硬件上,建立了基于反射内存技术的流场控制仿真系统,以获取现场采集的数据。建模方法采用数据建模方式,主要是利用系统辨识理论,将整个系统看成是一个“黑箱”,利用现场采集的数据来确定系统的参数和输入输出间的映射关系。采用以非线性自回归滑动平均模型(Non-linear Auto-Regressive Moving Average Model with Exogenous Inputs,NARMAX)作为风洞系统的数据模型,应用互信息法、曲线拟合法和伪最近邻点法分别确定了模型中采样间隔、时间滞后以及阶次3个参数。对比了最小二乘线性回归、BP 神经网络以及最小二乘支持向量机(LSSVM)3种方法对模型的拟合效果,确立了最小二乘支持向量机作为最终的拟合方法。为了提高仿真的精度,根据风洞运行的特点,将其整个过程划分为冲压、启动和调节3个阶段,分别建立了各个阶段的子模型。由于风洞系统是一个多输入多输出系统,并且延迟和阶次较大,采用了基于信息熵的数据压缩方法,实现了简化子模型规模的目的。最后,采用多模型融合的方法将各个阶段的子模型通过加权的方法来完成融合,从而构建起整个风洞系统的模型。稳定段总压和驻室静压分别通过所建模型得到,最后通过马赫数的计算公式得到试验段马赫数值。仿真结果表明:所建模型在运行包络线范围内的试验工况下,总压预测精度达到0.1%、马赫数预测精度基本达到0.001,达到了研究的目的。该项工作的开展较为系统地建立了暂冲式风洞的流场控制模型,建立的模型将为下一阶段基于现代控制理论的控制器设计奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号