首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 110 毫秒
1.
主、被动振动控制一体化理论及技术(Ⅱ)--组合控制   总被引:5,自引:2,他引:3  
本文是系列讲座的第二篇,涉及组合振动控制的基本问题,重点介绍近几年的研究结果。包括:各种阻尼材料及其性能,筒型粘弹性阻尼器特性及设计方法,自由和约束阻尼层结构以及粘一弹性复合结构的分析,直线式压电作动器PZT-AM和TOKIN的特性、试验及设计;在此基础上,以空间桁架为例,讨论了组合振动控制实现问题,涉及动力学特性分析和试验,用评价函数描述被动振动控制参数对主动振动控制的影响,作动器和阻尼器的优化配置等。从工程应用角度,本文指出应当建立相应的数据库,用来指导结构设计。  相似文献   

2.
主、被动振动控制一体化理论及技术(Ⅲ)--杂交阻尼   总被引:2,自引:2,他引:0  
本文是系列讲座的第三篇,以智能材料组成的杂交阻尼为主,介绍有关杂交阻尼的研究成果。对杂交阻尼进行了分类,讨论和比较了各种类型的杂交阻尼,包括:阻尼层结构的配置、主动和可控约束层阻尼板的建模及性能比较;电流变和磁流变阻尼的基本概念及其在振动控制中的应用;可控压电传感阻尼的机理及存在的问题。讨论了杂交阻尼在航天结构中的应用前景及其主要研究课题。  相似文献   

3.
讨论了具有可控约束阻尼结构的多点杂交阻尼控制问题,建立了弹性,粘弹性和多个压电片组成的多层复合梁的偏微分方程线,通过模态转换和应用粘弹性材料的振子模型对模型进行减缩。以实际中可测量量作为反馈量进行次优控制,数值模拟说明,提出了控制方式抑制振动效果好,控制电压低,易于实现。  相似文献   

4.
约束阻尼层板的振动分析   总被引:5,自引:0,他引:5  
约束阻尼层结构是一类利用阻尼层的剪切效应达到减振目的的结构。基于这一原理,本文分析了约束阻尼层板的振动。引入的位移模式中,考虑了附加部分对原结构运动的相对性和阻尼层的横向剪切效应,据此推导了约束阻尼层板的运动方程和边界条件。最后分析了简支矩形板的固有振动,讨论其振动特点。  相似文献   

5.
主、被动振动控制一体化理论及技术(Ⅰ)--导论   总被引:3,自引:2,他引:1  
本文是系列讲座的第一篇。针对工程中复杂结构的振动控制问题,本文以一个典型的航天结构为例,对振动控制一体化理论和技术的基本概念进行了介绍,以解决振动控制技术在复杂结构中实现的问题。对各种振动控制策略、控制材料和器件进行了讨论和比较,并对振动控制一体化策略实现中遇到的问题进行了分析,包括控制律中的鲁棒控制,作动器和传感器的优化配置问题,智能材料在振动控制中的应用,特别强调了杂交阻尼在结构减振中的重要作用。探讨了控制机理、优化设计以及智能结构的发展和研究目标,指出振动控制的研究必须与具体工程问题结合,强调试验的重要性,建议建立合作研究的标准化验证模型,促进振动控制一体化理论和技术的发展。  相似文献   

6.
约束阻尼尼板的振动分析   总被引:1,自引:0,他引:1  
约束阻尼层结构是一类利用阻尼层的剪切效应达到减振目的结构。基于这一原理,本文分析了约束阻尼层板的振动,引入的位移模式中,考虑了附加部分对原结构运动的相对性和阻尼层的横向剪切效应,据此推导了约束阻尼层板的运动方程和边界条件,最后分析了简支矩形板的固有振动,讨论其振动特点。  相似文献   

7.
采用独立模态控制法对含压电片柔性梁进行了振动主动控制实验研究,实现了压电柔性梁前三阶振动模态的独立控制。由施加控制前、后的系统响应对比分析知,实施主动控制后,柔性结构的模态阻尼得到了很大的改善,振动抑制效果十分显著。同时利用Hamilton原理,推导含压电片柔性梁的动力学微分方程,对压电柔性梁前三阶振动主动控制进行了数值仿真,并将仿真结果与实验结果进行对比分析,两者的吻合性良好。研究结果表明,利用压电陶瓷作为驱动元件,采用独立模态控制法实现柔性结构的振动抑制是一种非常有效的振动主动控制方法,在航空航天等领域中具有广阔的应用前景。  相似文献   

8.
针对航天领域内广泛应用的大尺寸、高柔性结构存在的振动自由衰减速度慢的问题,为了防止振动对飞行器结构的功能造成影响或者破坏,设计了基于宏纤维复合材料(Macro Fiber Composite,MFC)压电分流阻尼电路的结构减振方法。在对压电片电学特性分析的基础上,对电路结构进行了设计和分析,并用阻抗分析法对电路参数进行了优化,其中采用浮地模拟电感实现了电路中所需的大电感。针对典型悬臂梁结构,采用仿真手段分析了压电分流阻尼电路的减振效果,并搭建试验系统进行试验验证,压电分流电路能够显著降低结构的振动幅值。  相似文献   

9.
本文将各向异性设计引入层合阻尼结构中,从理论上分析了各向异性层合阻尼结构的阻尼特性及其控制机理,从而验证了建立约束阻尼层合结构各向异性优化设计新体系的可行性。  相似文献   

10.
主动控制是增强结构设计鲁棒性、提高结构性能的一种有效方法。本文利用在空间桁架结构内部配置的压电主动构件作为控制执行元件,进行了结构的主动阻尼控制实验,获得了较好的阻尼控制效果.首先设计了一种用于桁架结构控制中的压电堆式主动构件,并对其进行了实验研究,然后采用直接速度反馈控制策略,实现了结构的主动阻尼控制。文中还引入模态耗散能因子的概念,讨论了主动构件的优化配置问题.通过实验比较了空间桁架结构开环和闭环时的振动响应,说明了文中所述方法的有效性.  相似文献   

11.
为了抑制高速滚动轴承-转子系统在通过临界转速时的过大振动,本文采用了摩擦阻尼弹性支承结构.分析了该支承的减振机理和支承特性,设计了摩擦阻尼器,研究了其对转子系统不平衡响应的影响.结果表明,采用适当的机械结构,阻尼器的刚度因子和摩阻因子只与内环的锥角和接触面摩擦因数有关.通过改变这两个参数和外壳轴向刚度,可改变其刚度和阻尼特性.在转子系统支承中引入摩擦阻尼器能够降低支承刚度,从而降低系统的临界转速,避开工作转速.此外,还可增大支承阻尼,抑制临界振幅,减小系统的振动外传力.  相似文献   

12.
从自由试验提取具有弹性支承的阻尼约束结构的主模态   总被引:1,自引:0,他引:1  
作者已对边界固持(即刚性支承)的无阻尼和有阻尼的约束结构,从自由试验提取其实模态和主模态的方法进行过系统的研究,同时,对于具有弹性支承的无阻尼约束结构模态的提取,也建立了一种可行的方法。这些方法和技术途径都取得了良好的结果,仅剩下具有弹性支承的阻尼约束结构主模态的提取方法尚无。对此,本文企图建立一种工程中可行而实用的方法。在该方法中,阻尼分为瑞利阻尼和粘性阻尼两种模型,这样,可以根据不同结构选用不同阻尼模型下的提取方法。数值模拟结果表明,本文建立的方法虽然不像以前无阻尼下的类似方法那样,具有普遍性,即取任何支承刚度(可以很大或很小)都可获得满意结果。不过,对于工程中常见的支承刚度比结构刚度大或等量级的实际情况,本文方法是能取得满意结果的。这表明,本文方法已基本满足工程要求了。  相似文献   

13.
张德文 《强度与环境》2006,33(2):23-32,38
本文发展了一种利用自由试验提取阻尼约束结构复模态的可行方法。然后利用现有技术,又由提取的复模态辨识出工程中常用的主模态。本文采用了两种阻尼模型:瑞利阻尼和粘性阻尼。针对此两阻尼模型建立的提取约束结构复模态的两支配特征方程的精度是良好的。即使当所要求提取的约束结构模态的频率范围大于自由结构的试验频段,也能获得满意的结果。  相似文献   

14.
风洞试验时,由于气流的影响,测试用悬臂式尾支杆容易产生大幅度低频振动,这会严重影响测试精度,甚至损坏自身结构。为了有效抑制尾支杆的振动,本文设计了基于压电组件的主动减振系统,并将人工神经网络应用于PID控制,提出了神经网络PID智能控制算法。对尾支杆进行有限元分析,获取其模态参数。然后设计试验测试减振系统的性能,将神经网络PID与经典PID的控制效果进行对比。试验结果表明:在连续载荷的作用下,采用经典PID控制算法与神经网络PID均可达到有效控制(减振幅度70%以上),且神经网络PID在保证减振效果的情况下实现控制参数自整定,具有良好的鲁棒性。  相似文献   

15.
减速器壳体结构振动与辐射噪声分析   总被引:1,自引:0,他引:1  
从减速器壳体的振动特性出发,对由振动引起的辐射噪声进行了深入的研究;基于声振耦合理论,运用有限元和边界元的计算方法,实现了对减速器的振动噪声的虚拟再现,为减速器的减振降噪优化设计奠定了良好的设计基础。在建立良好有限元模型基础上,计算了减速器壳体结构的振动特性以及壳体表面典型节点处的声学量。设计了减速器缩比模型试验,定性分析灌注阻尼特性对减速器壳体结构的影响。通过对比壳体结构的响应特性,分别从理论和试验上得出了灌注阻尼在测试频段内的减振效果。  相似文献   

16.
由于高频涡流的作用,飞机局部复合材料构件承受面外气动冲击载荷,产生累积疲劳损伤.本文通过在复合材料壁板表面粘贴压电驱动器,采用传感器测量构件在气动冲击下的响应,应用自适应振动前馈原理,控制驱动器的驱动应变,从而抑制其动态响应,达到减小累积疲劳损伤的目的.试验结果表明,主要模态的应变幅值能够得到有效抑制.  相似文献   

17.
为了给被动约束阻尼(PCLD)结构的动力学分析提供更精确的粘弹性材料数学模型,进行了ZN-1型粘弹性阻尼材料模型参数修正的研究。以模型参数为优化变量,以PCLD悬臂梁固有频率和损耗因子的误差最小为优化目标,采用混合遗传算法修正了ZN-1型粘弹性阻尼材料模型参数。修正模型参数后PCLD梁动力学特性计算值比原始模型更接近于试验值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号