首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
航空声学风洞的声学设计研究   总被引:1,自引:0,他引:1  
随着航空运输业的发展,飞机的噪声问题日益引起人们的关注.开展航空声学试验研究的地面试验设备主要是航空声学风洞.笔者阐述了航空声学风洞声学设计的基本要求、应考虑的主要问题,提出了航空声学风洞声学设计的方法等.并将这些研究成果应用于引导风洞研制中,得到了在开口试验段风速80m/s时,气流外2m测点处背景噪声76.5dB(A)的结果.  相似文献   

2.
低速航空声学风洞背景噪声测试技术研究   总被引:4,自引:0,他引:4       下载免费PDF全文
介绍了在国内第一个全新设计的0.55m×0.4m航空声学引导风洞开展风洞背景噪声测量的技术方案和方法,对电容式麦克风、脉动压力传感器、预极化和非预极化传声器、自由场和压力场传声器、传声器安装方式以及声学频谱算法进行了比较实验和分析.在初期实验过程中,根据测试结果优化了风洞降噪方案,达到了较为理想的风洞背景噪声指标.测试结果表明:采用电容式麦克风比采用脉动压力传感器得到的频谱和声压级精度高;在消声部段前后的同一侧洞壁上测量,可以得到消声部段传声损失;压力场和自由场传声器在修正后可以互换使用;为得到重复性较好的背景噪声频谱和有效声压级,采用频谱线性平均算法.实验结果对低速航空声学风洞背景噪声测试具有一定的指导意义.  相似文献   

3.
声衬试验段环境下航空声学定位试验技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
针对在风洞闭口试验段对 C919、MA700等民机进行航空声学定位试验的需求,首先采用声衬试验段、波束形成麦克风相位阵列算法、对角移除反卷积方法和声压级积分方法等措施,解决闭口试验段存在的背景噪声较高、气流对麦克风测量干扰问题,然后采用 MA60飞机模型进行了验证性风洞试验。风洞试验结果表明,声衬试验段有利于在闭口试验段内安装传声器相位阵列、传声器线阵等测量设备,同时背景噪声较常规闭口试验段显著降低,降噪量达5~10dB;MA60飞机模型航空声学定位试验结果量级合理、规律正确,主要声源集中在襟翼位置。这表明,在 FL-9风洞闭口试验段建立了航空声学试验环境和噪声源定位试验技术,可以承担机体气动噪声定位、降噪技术验证等民机型号研制急需的航空声学试验。  相似文献   

4.
作为5.5m×4m 大型低速航空声学风洞的重要组成部分,声学测量系统主要用于准确识别试验模型气动噪声产生的区域,同时完成不同条件下的风洞背景噪声测试。根据国内外声学测量技术的现状,结合气动声学试验的特殊要求,研制了一套高性能的声学测量系统,用于完成气动噪声源定位和风洞背景噪声的准确测量。试验结果表明,该测量系统能够满足风洞声学试验的测试要求。分布式测试结构提高了系统的可靠性和信噪比;即插即用测试技术的应用有效减少了系统的搭建、配置和编程工作,提高了系统的灵活性和可配置性;多线程并行处理算法的设计和 TDMS 技术的使用实现了153.6MB/s 的数据实时流盘,同时构建的分组存储技术为海量数据的有序存储和快速检索提供了保证。  相似文献   

5.
气动噪声风洞试验技术发展概述   总被引:1,自引:0,他引:1       下载免费PDF全文
在大量查阅国内外相关技术文献的基础上,对风洞声学试验技术的发展历程进行了分析与总结,并对目前试验的两大关键技术领域——声学风洞与麦克风相阵列作了比较详细的介绍与讨论.通过对国内外气动噪声试验技术状况的调查研究,充分阐释了目前中国发展该项技术的必要性和迫切性,并提出了相应的建议.  相似文献   

6.
传统气动声学研究观点认为,精确的声学测量要求风洞背景噪声和洞壁反射足够低,传声器测量结果有足够高的信噪比,这是大多数风洞无法达到的要求.近些年,基于声纳和雷达技术发展起来的麦克风相阵列技术可以通过增加阵列的传声器数目从而大幅提高声学测量的信噪比,具有噪声源研究和定位能力,并被成功地应用于非声学固壁风洞噪声源测量和噪声物理机制研究.作者基于相阵列波束生成频域算法研制出常规闭口风洞相阵列系统及相关技术,在FD-09风洞尝试进行了相阵列校准试验和某民机噪声测量试验.结果表明:相阵列技术能够准确捕捉到真实的校准声源,并从技术上验证了相阵列系统在常规闭口风洞测量气动噪声是有效的.  相似文献   

7.
航空发动机结冰和防冰过程复杂,数值计算无法对其进行准确模拟,因此试验研究是发动机研究过程中必不可少的手段。我国首座大型结冰风洞已具备开展飞机翼段结冰试验的能力,有必要进一步发展航空发动机结冰与防冰试验技术,以满足下一步我国航空发动机型号设计与适航取证的需求。依托3 m×2 m大型结冰风洞,发展了进气模拟技术和热气供气技术,提出了一套结冰风洞试验流程及方法,并针对某型航空发动机进气部件开展了结冰风洞验证试验。结果表明:试验可真实模拟发动机内外流耦合和压气机引气防冰状态,且提出的结冰风洞试验流程及方法合理可行,实现了试验动态过程监测及进气道内流场压力测量,为下一步我国航空发动机结冰防护系统设计与安全适航符合性验证提供了技术支撑。  相似文献   

8.
基于声学风洞的麦克风阵列测试技术应用研究   总被引:3,自引:2,他引:1  
根据声学风洞气动噪声试验研究的需求,介绍了一种适用于声学风洞试验的麦克风阵列测试技术,并针对声学风洞的特点,利用风洞射流剪切层修正方法,提高了麦克风阵列识别声源的精准度.通过数值仿真和在0.55m×0.4m声学风洞的试验研究,验证了麦克风阵列测试系统和麦克风阵列数据处理方法识别声源的能力.研究结果表明所采用的麦克风阵列测试技术可用于声学风洞试验.最后还采用36通道的麦克风阵列在0.55m×0.4m声学风洞开展了NACA23018翼型气动噪声试验研究,试验明显地观察到翼型后缘噪声,获得不同迎角下翼型的噪声特性.  相似文献   

9.
连续式跨声速风洞设计关键技术   总被引:15,自引:3,他引:12  
为研制先进飞行器,除了提高现有风洞试验测量精度和改进试验技术外,必须建立高性能连续式跨声速风洞试验设备,解决飞行器高速风洞试验模拟能力和精细化模拟问题.以试验段尺寸0.6m×0.6m连续式跨声速风洞设计为例,给出了风洞总体设计方案,分析了如何降低风洞气流脉动、如何改善风洞流场品质、提高风洞运转效率和拓展风洞试验能力等关键技术途径.该风洞作为大型连续式跨声速风洞的引导风洞,方案设计主要采用了高压比压缩机驱动系统、半柔壁喷管、低噪声试验段、高性能换热器和三段调节片加可调中心体式二喉道等新型技术.  相似文献   

10.
该文内容涉及在气流当中进行声学测量存在的传感器自噪声问题.在速度为10m/s以下的气流中测量噪声,通常用泡沫球形风罩可有效降低气流流过传声器时产生的噪声(称为传感器自噪声).在速度为10m/s以上时,为降低自噪声,传声器必须装上特殊形式的鼻锥.但风速达到某个数值以后,传声器自噪声仍会太大以至于无法进行声学测量.所以,在高速气流中进行声学测量时,传感器自噪声成为测量的制约因素.根据自噪声主要取决于鼻锥的边界层与透声孔干扰的论断,笔者用风洞实验的方法研究了三种形式鼻锥的声学特性,试图寻找降低自噪声水平和提高实验风速的方法.研究表明,在透声孔上覆盖纱网可以降低传感器自噪声.在本文的实验条件下,加纱网可以降低自噪声约5dB或在保持自噪声水平相同的条件下提高实验风速约10m/s.  相似文献   

11.
在分析螺旋桨噪声特性和声学实验对风洞的要求的基础上,结合NF-3风洞的特点和声学工程设计经验,对该风洞螺旋桨实验段进行了声学改造。检测结果表明,改造的效果令人满意,NF-3风洞已初步具备声学实验能力。  相似文献   

12.
国外风洞试验的新机制、新概念、新技术   总被引:2,自引:0,他引:2  
风洞是空气动力学研究的重要地面试验设备,是保证一个国家航空航天处于领先地位的基础研究设施。面对新世纪航空航天领域的激烈竞争,世界发达国家加强了新概念风洞研制,改革风洞运行机制,一些新技术也在大型生产性风洞得到应用。  相似文献   

13.
本文首先分析了一级入轨和两级入轨的空天飞机对风洞试验的要求,指出现有风洞试验能力在空天飞机推进试验方面存在明显的不足,然后评述了美国常规风洞和脉冲风洞的最近进展。主要讨论了不同加热形式的常规风洞的特点,介绍了美国可供空天飞机推进试验用的现有常规风洞和最近改建的设备;分析了脉冲风洞用于推进试验的优缺点,介绍了激波风洞、自由活塞激波风洞和膨胀管用于推进试验的情况。最后对我国的风洞发展如何满足空天飞机的要求提出了建议。  相似文献   

14.
国外等离子体流动控制风洞试验技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
等离子体是一种由大量电子、离子和中性粒子组成且总体上呈中性的物质聚集体,它不同于物质的气态、液态和固态,而被称为物质的第四态.等离子体在航空航天器隐身、降噪、推进及空气动力学等方面的应用一直是国外发达国家的重点研究领域之一.归纳总结了国外研究的主要等离子体风洞形式和等离子体发生器形式;探讨了低、跨、超声速风洞模型上等离子体的作用机理和产生的现象,介绍了在等离子体流动控制方面开展的风洞实验技术研究.  相似文献   

15.
合理地设计当代跨声速风洞的稳定段、第二喉道、多喷嘴引射器、特殊的排气系统以及回流道等,对风洞获得低的噪声和低的湍流度、实现经济的增压运行、低的耗气量以及有效地控制和稳定试验段M数、降低风洞运转M数下限等都能起到显著的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号