首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
在对纳米CeO2粉体的Zeta电位进行测量的基础上,采用阴离子表面活性剂油酸和非离子型表面活性剂聚乙烯吡咯烷酮(PVP)对纳米CeO2粉体进行了分散实验,系统研究了超声分散时间、表面活性剂种类和浓度对纳米CeO2粉体在水相介质中分散稳定性能的影响。结果表明:随超声时间的延长,纳米CeO2粉体的分散稳定性出现先增后降的变化规律;分散剂种类和浓度不同,纳米CeO2的紫外吸收效果和可见光透光性也不同;对于每一种分散剂均存在最佳超声时间和最佳浓度。纳米CeO2粉体在水相介质中的最佳分散工艺为:超声时间10 min,浓度(质量分数)为2.0%的PVP。  相似文献   

2.
在对纳米α-Al2O3粉体的Zeta电位进行测量的基础上,采用无机电解质类分散剂(SHP),阴离子型表面活性剂油酸,阳离子型表面活性剂十六烷基三甲基氯化铵(CTAC)以及非离子型表面活性剂异丙醇胺(DIPA)对纳米α-Al2O3粉体进行了分散实验,系统研究了超声分散时间、表面活性剂种类和浓度对纳米α-Al2O3粉体在水相介质中分散性能的影响。结果表明,随超声时间的延长和分散剂浓度的增加,纳米α-Al2O3粉体的分散性均出现先增后降的变化规律,对于每一种分散剂均存在最佳超声时间和最佳浓度。纳米α-Al2O3粉体在水相介质中的最佳分散工艺为:超声时间40 min,浓度为1.5%的CTAC。  相似文献   

3.
偶联剂对纳米ZnO粒子在聚丙烯中的分散性影响   总被引:9,自引:0,他引:9  
纳米粒子共混法是制备聚合物纳米复合材料的方法之一。由于纳米粒子的比表面积大,其表面活性高,易团聚。本文通过对纳米ZnO粒子的表面改性处理.利用透射电子显微镜观察了其在聚丙烯中的分散情况。分析了纳米粒子分散的影响因素.并讨论了改进纳米粒子分散效果的方法。试验表明,溶液的pH值对ZnO纳米粒子的分散和团聚影响最大;溶剂的选择及溶液的浓度直接影响了ZnO纳米粒子的分散效果和分散效率;搅拌速度和分散温唐决定了偶联剂在ZnO纳米粒子表面成膜的质量。  相似文献   

4.
球形ZnS纳米粒子的制备和光学性质   总被引:4,自引:0,他引:4  
用快速均匀沉淀法制备了平均粒径3nm左右的球形ZnS纳米粒子。并且讨论了成长时间,反应温度,体系pH值,反应物浓度和配比对ZnS纳米粒子尺寸的影响。通过XRD,BET,紫外可见吸收光谱表征了ZnS纳米粒子的尺寸、结构和表面态性质。通过红外吸收光谱证明了吸附在ZnS纳米颗粒上的乙酸基起到控制粒子长大和防止团聚的作用。研究了ZnS纳米晶粒的荧光光谱,证实其在425nm处的蓝色发光峰是来源于表面硫空位与锌空位之间的电子-空穴复合跃迁发光。  相似文献   

5.
在ITO基底上采用电化学沉积法制备了Cu_2O改性的ZnO纳米阵列,通过场发射电子显微镜(SEM)、X射线衍射仪(XRD)和接触角测量仪等对其微纳结构和表面润湿行为进行了研究。实验结果显示,低表面能Cu_2O粒子的吸附增强了ZnO纳米阵列的超疏水性。很多材料表面对水滴有较高黏附力是因为材料表面微槽中密封的空气而产生的毛细管附着力,而ZnO纳米棒阵列表面对水滴的高黏附性是因为其表面的范德华力作用。改性后样品表面形成的ZnO-Cu_2O微纳分层结构减小了样品表面与水的接触面积。另外,加上Cu_2O自身的低表面自由能,共同导致范德华力减小从而使得表面对水滴的黏附小而具有很好的超疏水性。  相似文献   

6.
以TC4钛合金为基体制备出Ni-P-MoS2化学复合镀层,分析了pH值、MoS2微粒浓度以及表面活性剂种类、浓度对复合镀层耐磨性能的影响,并观察了镀层磨损后的形貌。结果表明:复合镀层的耐磨性随镀液中MoS2颗粒浓度和pH值的升高先增强后减小。在MoS2颗粒浓度为2g/L和pH为6.0时,阳离子表面活性剂十六烷基三甲基溴化铵与阴离子表面活性剂十二烷基硫酸钠的共同作用能有效促进MoS2微粒与Ni-P合金的共沉积,在钛合金表面形成一层均匀的固体润滑膜,显著降低摩擦系数。镀层中MoS2粒子起到很好的固体自润滑作用,减小了粘着磨损的发生。  相似文献   

7.
利用3-氨基丙基三乙氧基硅烷(KH-550)和2-溴代异丁酰溴(BIB)对纳米二氧化硅进行改性制备了原子转移自由基聚合(ATRP)纳米活性中心,采用紫外光引发丙烯酸十二氟庚酯活性聚合接枝在纳米二氧化硅表面并沉积在玻璃基材表面制备了超疏水表面。通过热失重分析纳米活性中心的接枝率,采用水接触角研究了纳米活性中心含量和光聚合时间对超疏水性能的影响。结果表明:随着纳米二氧化硅活性中心浓度增加,工艺稳定性变好,但光聚合沉积形成超疏水表面所需的时间要长。纳米二氧化硅活性中心浓度为3.63μmol/g为最佳,经40 min光引发活性聚合后,二氧化硅表面含氟聚合物的接枝率达到34.12%,接触角达到164°,表面微纳结构致密。  相似文献   

8.
从描述粒子运动的微观层次出发,采用双向耦合技术,建立了一种适用于稀薄条件下两相流动的DSMC数值模拟方法。对相间相互作用进行解耦处理,实现了气固两相间动量和能量相互作用的模拟。采用基于DSMC方法的稀薄两相流双向耦合算法,对NPLS测量技术高超声速流场测量中纳米粒子的跟随性进行了数值研究。通过Φ50nmTiO2粒子在不同高超声速流场条件下气相-纳米粒子两相流场的仿真,表明在稀薄度很小的流场中,纳米粒子的跟随性很好。而随着流场稀薄度增加,流场中纳米粒子的跟随性降低,纳米粒子在流场中的分布与气相流场分布差异变大,通过NPLS测量得到的激光散射信号不能反映流场结构。  相似文献   

9.
实验研究了不同质量分数的SiO2-水纳米流体在波壁管内的流动特性,由于波壁管自身的结构特点,使流体在较小雷诺数下达到湍流状态,可以方便测出流体在层流、过渡流、湍流区的流动特性.研究发现:相同温度条件下,纳米流体的粘度随着质量分数的提高而增大;流动可视化照片显示纳米流体中由于内部纳米粒子的微运动促使流体均匀性更好;沿程阻力测试表明在层流区内摩擦系数随纳米流体质量分数的增加而增大,在过渡流和湍流区内摩擦系数随质量分数增加变化不大.  相似文献   

10.
考虑纳米纤维表面流体滑移效应,在二维简化模型下采用数值方法研究了纳米-微米复合纤维对惯性粒子的捕集行为。分析了纳米-微米纤维复合形式对粒子捕集效率、效率增长比例因子以及综合过滤性能的影响。结果表明:在微米纤维迎风面45°和90°处放置纳米纤维,可显著增大复合纤维对粒子的捕集效率,并对弱惯性或中等惯性粒子捕集表现出较高的过滤性能质量因子;而当纳米纤维位于微米纤维迎风面0°位置时,仅对3μm以下粒子的捕集效率起增大作用;纳米-微米纤维间距(δ)增大对粒子的捕集效率有增大作用,且与纳米纤维放置角度和所捕集的粒子大小均有关。  相似文献   

11.
针对纳米粒子易团聚的特点,本文采用乳液聚合方法制备纳米Al2O3/PS复合粒子来进行改性,考察了不同工艺参数对乳液聚合的影响,并运用TEM、FTIR对复合粒子进行了表征。研究发现:在反应温度为800℃,乳化剂为$DS和OP—10复合乳化剂,St和纳米Al2O3投料比为2:1,单体滴加速度为5滴/min条件下所制备出的复合粒子具有以纳米驰03为核,PS为壳的核壳式结构,其包覆层厚度大约为10~20nm。  相似文献   

12.
采用超声-溶胶凝胶法在黄麻纤维表面原位沉积纳米SiO_2,通过红外光谱分析,微观形貌分析以及沉积量测试,讨论了不同工艺参数对纳米SiO_2沉积效果的影响。结果表明:随着正硅酸乙酯(TEOS)浓度或氨水浓度的增加,纳米SiO_2的沉积量逐渐增多,粒径逐渐增大;随着沉积温度的升高,纳米SiO_2的沉积量逐渐减少,粒径逐渐减小;与沉积温度为20℃相比,当沉积温度为60℃时,纳米SiO_2的沉积量减少了36.4%、粒径减小了37.8%;沉积时间主要影响纳米SiO_2的沉积量,对其粒径的影响不明显。通过实验探究了纳米SiO_2成核与生长的机理:黄麻纤维表面的孔隙结构为纳米SiO_2提供了成核位点;TEOS经过水解缩合反应形成短链交联结构,通过氢键或化学键沉积于黄麻纤维表面的孔隙中;短链交联结构经过成核与生长过程,逐渐形成纳米SiO_2颗粒。因此,通过对工艺参数合理地选择,可以调控纳米SiO_2在黄麻纤维表面成核与生长阶段的形貌与沉积量。  相似文献   

13.
对在稳态剪切流下的一种稀疏界面活性剂溶液进行了布朗动力学数值模拟.棒状的界面活性剂胶束粒子被假定为由圆球线性连接而构成的刚性棒.本文引进了一种新的势作用模型来描述胶束粒子间的相互作用,利用Lennard-Jones势函数来描述棒端部球之间的相互作用,而采用软球势函数来描述棒内部球之间的相互作用.在低剪切率条件下,胶束粒子在端部相互连接而形成网状结构.随着剪切增大,网状构造遭到破坏,胶束粒子趋向与剪切流方向平行.这种溶液微结构随剪切率变化关系导致了溶液剪切粘度和第一正应力差系数的剪切稀化现象.此外,还考察了溶液浓度对剪切粘度和第一正应力差系数的影响.结果表明,剪切粘度和第一正应力差系数均随溶液粘度的增加而增加.  相似文献   

14.
采用简单的热蒸发法可控制备三角和六角对称Zn O纳米结构。借助于X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对样品的微结构进行表征和分析。研究结果证实:三角和六角对称Zn O分支纳米结构的主干沿[0001]方向生长;三角对称Zn O的分枝沿[21 10]、[1210]和[1 120]晶向,而六角对称的分枝沿[0001]晶向;基于电镜表征和晶体表面能分析,提出了Zn O纳米结构的形成机制。利用紫外可见光吸收光谱(UV-vis)和光致发光谱(PL)研究了2种Zn O分支纳米结构的光学特性。位于3.23 e V(三角)和3.24 e V(六角)的PL发射峰为Zn O的带边发射,与Zn O体材料相比出现明显的红移。  相似文献   

15.
纳米硫化物半导体颜料的制备及其红外发射率研究   总被引:10,自引:0,他引:10  
为了制备出在8~14μm红外波段具有较低红外发射率的颜料粉体,本文以醋酸镉Cd(AC)2.2H2O,醋酸锌Zn(AC)2.2H2O,硫化钠Na2S.2H2O为原料,采用化学均匀沉淀法在水浴中制备了平均粒径40nm左右的CdZnS固溶体纳米粒子。分析了实验反应过程中反应时间、反应温度和搅拌速度对CdZnS纳米粒子半径尺寸的影响。通过XRD,BET(ASAT2010)比表面仪和TEM表征,研究了粉体的粒度、结构和表面形貌等特征;通过IR-1红外发射率测量仪器测试了粉体在8~14μm波段的红外发射率。作者着重讨论了粉体粒径和8~14μm波段红外发射率之间的关系。并对此给出了一定的解释。  相似文献   

16.
活塞式内燃发动机是现代工业中应用最为广泛的动力机械装置。由于其内部燃料喷射、蒸发、燃烧等复杂的工作过程会对发动机的结构可靠性、能量利用效率和污染物生成产生极大影响,研究内部过程的物理机理并确定控制策略对于发动机的设计和改进具有重要的科学意义和实用价值。近年来,为更加深入理解发动机内部工作过程,研究人员广泛采用光学诊断试验技术来测量发动机缸内流动和燃烧特性。本文首先介绍了各类用于模拟发动机工作过程的试验台架(如定容燃烧弹、快速压缩机、光学发动机等)。在此基础上,分析了各类光学诊断技术的基本原理及其在发动机研究中的应用。光学诊断技术分为两类进行讨论,分别是基于传统光学的传统诊断技术(如纹影法、双色法等)和基于激光的先进诊断技术(如粒子图像测速法、激光诱导荧光法等)。光学诊断技术可在多尺度下测量缸内温度、物质浓度、液滴粒径等参数,为准确评估发动机喷油、蒸发、燃烧过程提供试验依据。更重要的是,光学诊断技术为更加深入理解高温高压环境下流动、燃烧的物理/化学机理提供了可能性,为开发高功率、高能效、低排放的先进发动机提供可靠的试验手段,同时为研究人员未来开展基础试验研究、更加深入地理解发动机工作过程提供指导。  相似文献   

17.
采用粒子图像测速(Particle Image Velocimetry,PIV)技术,研究了介质阻挡放电等离子体激励对NA-CA0015翼型表面流动分离的控制特性.通过风洞实验,研究了电极电压、电极位置和布置方式等参数对翼型分离控制的影响规律,并初步分析了等离子体流动控制机理.结果表明等离子体激励在失速迎角附近可以有效抑制翼型的流动分离,实现气流的完全再附着;在来流速度为20m/s时,将气流再附着的迎角提高了5°.  相似文献   

18.
采用水热合成法,以Ce(NO3)3·6H2O为铈源,分别制备了CeO2纳米片、纳米棒和纳米管等3种不同形貌的催化剂,并对其进行了化学结构和表面性能的表征;将这些催化剂用于催化臭氧化降解废水时发现催化剂的表面形态及反应体系的控制条件对催化效率具有显著的影响,其中CeO2纳米管表现出最优良的催化活性。在CeO2纳米管用量为0.5 g,臭氧投加量为15 mg/min时催化臭氧化反应2 h后,对体积为1 L、初始TOC浓度为100 mg/L的柠檬黄溶液中的有机物矿化率高达97%,因此,纳米CeO2作为催化臭氧化技术中新型催化剂具有很大的发展前景。  相似文献   

19.
液体燃料爆炸抛撒及云雾形成的实验研究   总被引:3,自引:0,他引:3  
为了分析燃料的物理化学性质、表面活性剂对液体燃料爆炸抛撒过程的影响,进行了相关实验研究,用高速摄影机记录了不同情形下的液体燃料爆炸抛撒及云雾成长过程。实验结果表明,液体燃料爆炸抛撒过程可以分为加速运动、减速运动和扩散运动三个阶段;选用低粘度、低表面张力且具有一定挥发性的液体燃料可获得较好的爆炸抛撒及雾化效果;适量表面活性剂的加入虽不能增加燃料云雾最终扩展半径,但可使液体燃料分散得更均匀,从而更有利于爆轰的传播。  相似文献   

20.
通过原位聚合制备了纳米氧化锌颗粒增强不同添加量和分子量的聚乙二醇(PEG)与聚对苯二甲酸乙二醇酯(PET)共聚物的复合材料。研究了纳米粒子在基体里的分散,以及纳米粒子和PEG对复合材料结晶行为的影响。结果显示,纳米粒子在基体中以纳米尺度分散起晶核作用。PEG的加入使得纳米粒子分散更加均匀,PEG分子链段改善了PET分子链的柔性,由此导致复合材料的冷结晶温度降低,结晶速率提高。研究发现,当添加10%分子量为4000的PEG时,复合材料的结晶速率快速提高。复合材料的力学性能结果说明,纳米粒子对PET基体有增强增韧作用,但PEG会弱化该作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号