首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
在高速大迎角时的动态气动特性是衡量新一代高机动飞行器气动性能的重要参数之一。笔者介绍了在CARDC的FL 21与FL 24高速风洞配套的大振幅俯仰动态失速实验系统。该系统包括:FL 21与FL 24高速风洞大振幅俯仰运动机构;俯仰运动控制系统;数据采集与处理软件系统。该系统可以在高速风洞中真实模拟飞行器大振幅俯仰运动,并测量其相应的非定常气动力的变化,也可以为飞行器的飞行力学动态性能分析或飞行模拟器提供非定常气动力数据。试验研究初步揭示了航天飞机OV102模型高速大迎角俯仰运动的动态气动特性。  相似文献   

2.
飞行器非定常气动力试验与建模研究   总被引:1,自引:0,他引:1  
介绍了57°三角翼布局战斗机模型在CARDC直径3.2m风洞进行的俯仰、偏航和滚转3个方向大振幅振荡的非定常气动特性,试验的振幅为20°、35°,俯仰和偏航振荡的减缩频率为0~0.06,滚转振荡的减缩频率为0~0.2。另外利用基于频率域的Fourier变换法和非线性代数法,对非定常气动力建模进行了探讨,气动模型预测结果和试验结果具有较好的一致性。  相似文献   

3.
主要介绍了翼身组合体模型在CARDC-Φ3.2m亚声速风洞进行非定常气动特性研究。研究内容包括一60°后掠角三角翼身组合体在俯仰和滚转振荡中的气动特性,以及展向吹气对动态气动特性的影响。另外,运用PIV技术研究了非定常气动特性及展向吹气影响的流动机理。研究结果表明:利用展向吹气可显著改善在俯仰和滚转振荡中气动特性的迟滞现象。  相似文献   

4.
对飞行器在高速大迎角时的动态气动特性的研究是很重要的。在CARDC进行了高速风洞动态失速试验技术研究,使用专用的动态失速机构,以60°、70°和76°三角翼为模型,在M=0.4~1.0范围内,在不同振幅、不同频率情况下进行了风洞试验,分别测量了各三角翼的动态气动载荷,研究了在大振幅俯仰振荡时各三角翼的动态气动特性,重点研究了压缩性对三角翼动态特性的影响。结果表明随着M数的增加,上述三种三角翼的非定常效应减弱。  相似文献   

5.
飞机偏航-滚转耦合运动非定常空气动力实验   总被引:6,自引:1,他引:6  
在3m低速风洞中设计制造了一套动态实验系统,不仅能模拟飞机单自由度机动飞行运动.还能实现模型绕体轴的偏航-滚转耦合运动。通过选择运动参数.可实现绕两个轴运动角速度之间的匹配,满足飞机典型机动飞行所需的绕速度轴的无侧滑偏航一滚转运动。试验测量了BJ-1飞机模型在不同迎角下单独滚转、单独偏航和偏航-滚转耦合运动时的非定常气动特性。结果表明,飞机机动飞行时多自由度运动的气动特性比单自由度运动气动特性复杂,耦合运动时的气动特性与两个单自由度运动的气动特性的叠加结果相比有很大差别。  相似文献   

6.
为研究高性能战斗机在大迎角机动飞行时复杂的非定常流动现象和运动-控制耦合现象,研制了三自由度风洞虚拟飞行试验系统,开展了类F-16飞行器模型风洞虚拟飞行试验。在小迎角试验中完成模型短周期运动模态模拟和控制律验证,在大迎角试验中测量到俯仰运动失稳现象,在负迎角试验中测量到横航向耦合失稳现象。研究表明:在横航向耦合失稳时,采用副翼增稳滚转通道难以恢复横航向稳定性,且可能发生运动-控制耦合振荡,而通过升降舵机动改变迎角可有效恢复横航向稳定性。  相似文献   

7.
本文给出了利用展向吹气控制飞行器正弦俯仰振荡的气动力迟滞环。模型为60°三角翼翼-身组合体;俯仰振荡的减缩频率为0.039和0.078,实验迎角范围为0°~60°。实验研究包括流态显示和气动力测量。结果表明展向吹气可以明显改善飞行器动态运动中的气动力迟滞特性,使上仰和下俯过程中气动力的差异显著减小,即减小了“迟滞环”的宽度。  相似文献   

8.
三角翼大幅度俯仰运动非定常洞壁干扰实验研究   总被引:1,自引:0,他引:1  
在 3m低速风洞中用两个后掠角均为 70°的大小三角翼模型进行过失速非定常运动模拟 ,两个模型外形几何相似 ,根弦比为 1∶ 2 .1 2 5。在模型运动过程中测量模型的非定常气动力和风洞洞壁上的非定常壁压。研究大小模型对非定常气动力和非定常壁压特性的影响以及模型运动的缩减频率效应和雷诺数效应。结果表明 ,非定常壁压与非定常气动力一样具有迟滞特性 ,模型越大 ,迟滞环越大。  相似文献   

9.
在 FL-8风洞中设计并制造了一套双自由度大幅振荡实验系统,不仅能模拟飞机单自由度机动历程,还能实现模型绕体轴的偏航-滚转耦合运动及俯仰-滚转耦合运动。本文通过适当的实验设计,基于运动时间历程的影响分析,在振荡平衡位置定量地研究耦合因素对偏航-滚转耦合振荡运动中非定常气动力特性的影响。结果表明,当振荡运动平衡位置迎角远小于失速迎角时,偏航-滚转耦合运动的气动力等于单自由度运动相应气动力的线性叠加,平衡位置迎角在失速迎角附近时,非定常气动特性受耦合因素影响显著,而平衡位置迎角在远大于失速迎角时,非定常气动特性受耦合因素影响变小,但仍然较大。  相似文献   

10.
非线性非定常气动力的模糊逻辑建模方法   总被引:2,自引:0,他引:2  
建立了非线性非定常气动力的模糊逻辑模型。利用大迎角俯仰及滚转振荡气动力验证了模型的有效性。结果表明:该模糊逻辑模型对非定常气动力有很好的预测能力;利用模糊逻辑方法可建立包括非基本运动状态变量在内的多变量非线性非定常气动力的数学模型。  相似文献   

11.
在中国航空工业空气动力研究院FL-5低速风洞进行了80°三角翼流动显示和涡频测量试验研究。介绍了能产生扫描式6片光的旋转镜平行多片光装置;介绍了能产生连续、均匀的示踪粒子且粒子浓度可调的气压式粒子发生器;介绍了测量涡跳动频率的光学方法和用应变天平测量模型抖动频率的方法,并对大迎角和大滚转角时涡跳动频率和模型抖动频率进行了测量,结果表明:α=42°、=42°时模型抖动频率(7.2Hz)和涡跳动频率(7.75Hz)接近,模型的抖动可能是由前缘涡的非定常跳动引起的;介绍了流动图像处理的相位平均技术,该技术可用于动态流动显示和测量,并可对动态迟滞效应进行定量分析;介绍了流动显示图像的三维重建技术,该技术可用于显示空间涡的结构并分析其机理。  相似文献   

12.
在气动院FL-8风洞中,采用旋转流场下单自由度振荡机构进行了旋转流场下大幅滚转运动的动态气动特性实验研究.模型在绕风轴连续旋转的同时进行给定频率和振幅绕体轴的滚转振荡运动,测量了模型的动态气动特性,着重分析了不同运动参数对模型气动特性的影响.结果表明,旋转速度的存在使大幅滚转振荡试验中的滚转力矩和偏航力矩发生平移,同时使滚转力矩和偏航力矩的迟滞特性发生明显的变化.  相似文献   

13.
众所周知,风洞试验中的飞机模型,尤其是带有大展弦比机翼的模型有时会出现翼梢振动现象,振动模式主要表现为翼梢沉浮和俯仰形式,以致影响实验结果的精度和可靠性。选取相对厚度较小的NACA0008翼型,在求解非定常Navier-Stokes方程的基础上,采用改进的无限插值理论和绕翼型的C型网格,模拟风洞实验中模型振动条件下的流场,研究振动模式及其不同耦合对流场、尤其是大迎角流场的影响,并考虑了模型弹性轴不同位置对结果的影响。研究结果表明:在临近传统定常失速迎角的大迎角条件下,翼型的振动可以引起翼型大尺度的分离,导致翼型失速的提前发生;振动在不同的相位滞后条件下,对翼型流场的分离程度不尽相同。  相似文献   

14.
通过风洞测力实验,研究了40°后掠角不同前缘形状对三角翼气动特性的影响。实验结果表明:前缘背风面倒角机翼的升阻比最大,而前缘迎风面倒角机翼的升阻比最小。相同前缘形状倒角机翼,其倒角值的变化对三角翼升力特性的影响不大。小迎角下,前缘迎风面倒角机翼的升力系数略高于其余不同前缘形状的三角翼。  相似文献   

15.
采用SST两方程湍流模型,通过求解非定常Navier-Stokes方程,模拟了大展弦比机翼风洞模型振动条件下的翼型流场,总结了翼型不同振动状况下的流场和气动力特点,分析了模型设计中的不同振动情况对风洞试验结果的影响.研究结果表明:在大展弦比机翼风洞模型的设计中,将翼型的重心设计在机翼的弹性轴之后,对风洞试验的精度较为有利.此结论对大展弦比机翼的风洞实验模型设计有指导意义.  相似文献   

16.
常规风洞静态气动力测量技术无法得到旋转导弹的非定常气动特性数据,需要研究在风洞中模拟旋转导弹运动特征以及对气动力实现动态测量的试验技术。在1.2 m量级超声速风洞中,研究了大长细比导弹模型旋转运动主动控制技术以及与旋转运动对应的动态测量试验技术。采用旋转导弹模型(长细比为20)对建立的试验技术进行了风洞试验验证。结果表明:采用微型驱动系统并对旋转组件与导弹模型进行一体化设计,可以对大长细比导弹模型转速进行稳定控制;建立的风洞动态测力试验技术可以对导弹模型旋转运动下的动态数据进行测量,试验数据重复性精度良好。  相似文献   

17.
鸭式布局战斗机非常规机动的流场机理数值分析   总被引:2,自引:0,他引:2  
以先进战斗机的非常规机动为对象,发展了一种适用于大幅度运动变化的非结构嵌套网格生成方法,建立了一整套非定常流场N-S方程数值求解方法。在对三角翼动态气动特性计算验证的基础上,模拟了飞机过失速机动条件下飞行姿态和来流速度的变化特征,对鸭式布局战斗机"眼镜蛇机动"的非定常涡结构、非定常气动力效应和气动特性进行了数值研究,揭示了鸭式布局战斗机"眼镜蛇机动"的非定常流场机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号