首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
为了克服无法精确控制光纤埋入长度和埋入方向等缺点,重新设计了光纤单丝拔出实验.有限元计算结果表明,新旧方法下,光纤各部分剪切应力的分布规律相同,且各相应应力数值误差不超过5%.根据原理设计了纤维穿透基体的光纤拔出实验模具,并进行了普通单模光纤以及碳涂敷单模光纤与基体材料间界面剪切强度实验研究.光纤单丝拔出实验现象表明,光纤涂敷层与内部包覆层间界面平均剪切强度较低,因该强度值与光纤周围的基体材料上承受的沿光纤轴向的正应力相关,若将光纤埋入到复合材料中去,轴向载荷不宜过大,否则会出现光纤涂敷层和包覆层之间界面剪切剥离,产生裂纹,从而降低整体结构的力学性能.  相似文献   

2.
提出并研究一种构成光纤传感网络埋入复合材料内部用于损伤探测的光纤传感技术.对光纤进行化学处 理,剥去光纤外层在纤芯表面形成无规则分布、大小不一的微粒,在光纤形成随机壁微扰区.根据随机壁微扰导致导模与辐射模的模转换引起功率损耗的特性,随机壁微扰区就可以为敏感区.本文根据平面波导随机壁微扰理论并实验研究了腐蚀时间与相对功率损耗的关系.最后给出内含光纤传感网络试件的实测结果.结果表明,本文提出的光纤传感技术可用于复合材料损伤探测,为监测飞行器飞行时的载荷及损伤结果提供一种测试方法.  相似文献   

3.
基于新型光纤智能结构的远程监控物联网系统设计   总被引:1,自引:0,他引:1  
针对现有光纤智能结构自诊断、自修复系统存在的问题,提出并设计了一种基于ARM和GPRS的液芯光纤智能结构的远程监控物联网系统,系统主要包括光源、液芯光纤智能结构、光电检测模块、A/D转换模块、ARM微控制器、GPRS无线通信模块、Internet和监控中心服务器。其中液芯光纤智能结构是由特制的液芯光纤埋入复合材料中构成,采用GPRS无线通信技术,结合以S3C2440为核心处理器的ARM嵌入式技术,同时在监控中心采用自主设计的监控可视化软件直接输出结果,具有直观可靠、控制简单等优点。本文还对液芯光纤智能复合材料结构进行承载实验研究,并采用BP神经网络理论对实验数据进行分析和载荷位置判定,研究结果表明该监控系统性能稳定且效果明显,对复合材料结构载荷位置能够作出准确判断,初步实现了复合材料结构的自诊断。  相似文献   

4.
碳敷层光纤在碳纤维复合材料智能结构中的应用   总被引:2,自引:0,他引:2  
在碳纤维复合材料结构的固化过程中,埋入其中的光纤将承受恶劣的环境,这将使光纤的光学性能发生变化,从而影响碳纤维智能复合材料结构中光纤传感系统的性能。文中对多种光纤进行了试验研究,在碳纤维复合材料固化过程中,发现普通敷层光纤的性能发生变化,而央敷层光纤的性能不会发生变化,并对这些现象的原因进行了初步讨论,从而为在碳纤维复合材料智能结构中光纤的选择提供了一定的依据。  相似文献   

5.
三维编织复合材料是当前先进复合材料领域研究的热点并已开始广泛应用于航空航天等许多领域.三维编织复合材料具有很多优点,但这种材料的性能也较复杂.文中提出一种研究三维编织复合材料性能的新方法,也即将光纤传感器多个编入编织复合材料实现编织智能复合材料,以监测三维编织复合材料的RTM工艺过程,研究其力学性能及监测其在使用过程中的健康状况.对于光纤传感器而言,光纤的光学性能的好坏同光纤传感器的性能密切相关,因此,着重通过实验提出了一种光纤编入三维编织复合材料的方法并对光纤编入材料前后及编入后随材料进行RTM固化前后的光学性能进行了测试对比研究.  相似文献   

6.
智能结构中埋入式光纤传感器的研究   总被引:1,自引:0,他引:1  
针对复合材料结构试件内部参量的测量提出了一种新型埋入式光纤传感器的研究方案。这种方案是采用双光敏管结构来检测干涉条纹的,运用适当的处理电路来计数条纹的移动量,并判断条纹的移动方向,从而测出复合材料构件内部物理参量的变化。对这种干涉型埋入式光纤传感器用于复合材料试件内部应变测量进行了理论推导,导出了条纹的移动量与应变的关系,并把这种传感器埋入环氧树脂复合材料梁中,对其应变进行了测量,给出了实验装置和  相似文献   

7.
基于光纤光栅的编织复合材料多点热应变监测   总被引:1,自引:0,他引:1  
为研究三维编织复合材料的热特性,本文利用编入编织复合材料结构的光纤Bragg光栅传感器来测量其内部多点热应变。为消除光栅自身温度受温度的影响,本文提出了用另一个自由状态光纤Bragg光栅对其进行温度补偿的方法。通过实验获得了编织复合材料的热应变与温度关系曲线。实验结果表明,碳纤维/环氧树脂三维编织复合材料结构的编织角较小时,在编织方向上的热膨胀率为负。  相似文献   

8.
埋入式光纤应变传感器   总被引:4,自引:1,他引:4  
埋入式光纤应变传感器是近年来随着智能复合材料的发展而发展起来的一项新技术,将传感器和致动器埋置于复合材料中,就形成了智能复合材料,而光纤传感器具有尺寸小重量轻的特点,当把它们直接埋置于复合材料中时,它们也能在恶劣的环境下工作,它们的这些特点晨常适合于制作埋入式传感器,并且能大大提高智能复合材料在航天等方面应用的潜力,本文仅对智能复合材料中的光纤应变传感器进行了探讨,介绍了几种常见的埋入式光纤应变传  相似文献   

9.
光纤表面等离子体波传感器在理论上具有较高的研究价值 ,并且因为结构简单、灵敏度高等特点在工程上得到广泛应用。使用光纤表面等离子体波来测试折射率 ,方法简单、灵敏。本文介绍了利用光纤表面等离子体波传感器使用这种方法对环氧树脂复合材料进行固化监测。文中对不同折射率的溶液进行了折射率测试的研究 ,并设计了一种用于折射率测量的性能稳定、操作方便的光纤传感探头及整套的测试系统 ,用以对固化过程中环氧树脂在不同阶段的折射率变化进行实测。测试结果表明 ,该系统工作稳定、可靠 ,测试结果符合实际情况  相似文献   

10.
提出利用光纤基线代替野外基线标定激光测距仪的方法,将室外基线引入到室内。研究激光到光纤耦合方法并选取适当的耦合元件参数,搭建稳定的激光器到光纤高效耦合平台。对3段不同长度光纤基线进行了光程长度测量实验,分析了光波长、温度、聚焦透镜、色散等因素对测量结果的影响。实验获得了稳定的测量数据,测量结果偏差在2mm以内,验证了方法的可行性。  相似文献   

11.
Optical fiber-based sensors are usually applied in structural health monitoring(SHM)as part of smart materials.The weak interface between the optical fiber and the host material will reduce the mechanical performance of the smart materials.Normally,the principal parts of the optical fibers are inorganic,while the matrix of host material is organic.These two kinds of materials can not be combined.Micro-fracture can be found in smart materials.Two methods for improving the interface are proposed.Firstly,the influence of the interface size on the strength is studied.Secondly,interfacial treatment before embedding the optical fiber into the composite is analyzed.Compressive tests of composite laminated specimens are conducted to evaluate the proposed methods.The specimens are produced from T300Carbon/epoxy prepreg,with different treated optical fiber embedded inside.The experimental results indicate that smaller interface size and proper treatment will strengthen the whole structure.  相似文献   

12.
本文综合介绍了近年来国外迅速发展的具有光纤神经系统的新颖复合材料结构的研究成果及发展趋势。提出了埋设于复合材料内部的光纤系统将成为未来飞行器结构的“神经网络系统”而使结构成为“智能结构”等新概念。文章较详细地阐述了这种新颖结构在制造和使用过程中在应变、变形、固化、损伤、疲劳等检测方面的具体应用及发展趋势。  相似文献   

13.
采用双参数威布尔模型描述纤维强度分布,结合总体载荷承担准则确定基体裂纹平面处断裂纤维和完好纤维承担载荷。基于卸载/重新加载时纤维相对基体滑移损伤机理,确定了纤维轴向应力分布。采用断裂力学方法确定了界面脱粘长度、卸载界面反向滑移长度和重新加载新界面滑移长度,对比了不同峰值应力下考虑和未考虑纤维失效影响的迟滞回线,分析了纤维特征强度和纤维威布尔模量对纤维失效、迟滞回线形状和面积的影响,预测的迟滞回线与试验数据相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号