首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
采用CVI+PIC工艺制备了密度为1.35~1.45 g/cm3的C/C多孔体,对多孔体进行LSI快速获得C/C-SiC防热材料,表征了防热材料的微观结构、弯曲性能,对其进行300 s氧乙炔烧蚀试验,检测了筒形C/C-SiC燃烧室热结构缩比构件的整体承压性能。结果表明,采用CVI+PIC方法成型的C/C多孔体LSI后,液相Si主要与树脂炭反应,生成的SiC位于纤维束之间的大孔孔隙中,由炭纤维束与其内部和包覆在纤维束表层的热解炭构成的增强相未受液Si浸蚀。制备的C/C-SiC弯曲强度达122 MPa,弯曲破坏呈现明显的假塑性断裂;筒形C/C-SiC燃烧室热结构缩比件(外径175 mm、壁厚7.5 mm、高度200 mm)水压爆破压力为5.2 MPa。C/C-SiC材料氧乙炔试验线烧蚀率0.000 2~0.000 3 mm/s、质量烧蚀率0.000 1~0.000 3 g/s,材料的烧蚀以热化学烧蚀为主,烧蚀型面整体平滑,烧蚀表面形成了SiO2抗氧化玻璃相和Si纳米线。  相似文献   

2.
采用低温反应熔渗工艺,以Zr_2Cu合金为熔渗金属,在密度为(1.25±0.05) g/cm~3的毡基C/C复合材料中引入ZrC+Cu组分,以提高其抗氧化烧蚀性能。采用X射线衍射仪(XRD)、光学显微镜(OM)和扫描电子显微镜(SEM),分析C/C-ZrC-Cu复合材料的相组成与微观结构,在氧-乙炔环境下考核材料的抗烧蚀性能。结果表明,C/C-ZrC-Cu复合材料形成了三维网络状(热解碳+ZrC+Cu)混合基体结构,热解碳可以有效防护高温金属熔体对碳纤维造成的损伤,Zr C和Cu的引入有效改善了抗烧蚀性能,氧乙炔烧蚀120 s后,线烧蚀率从毡基C/C复合材料的9.0×10~(-3)mm/s降低为-1.0×10~(-3)mm/s,主要归因于材料表面形成了相对完整的ZrO_2保护层和Cu的发汗冷却作用,对应的氧化烧蚀机制主要为Zr C、C等氧化引起的热氧化烧蚀和Cu熔化、挥发等引起的热物理烧蚀。  相似文献   

3.
三维针刺C/C-SiC复合材料的烧蚀性能   总被引:2,自引:0,他引:2  
采用"化学气相渗透+先驱体浸渍裂解"(CVI+PIP)混合工艺,制备了三维针刺C/C-SiC复合材料,使用氧气流量和乙炔流量之比为2∶1的氧乙炔焰,研究了复合材料的烧蚀性能,烧蚀时间长达600 s;分别用扫描电镜和表面能谱,分析了烧蚀表面的形貌和成分。结果表明,复合材料的线烧蚀率和质量烧蚀率的平均值分别是0.004 3 mm/s和0.001 4 g/s。烧蚀表面不同区域微观形貌和烧蚀机理不同,烧蚀中心以基体氧化流失、C纤维的氧化以及气流冲刷为主;在过渡区域,烧蚀是以SiC基体的氧化和气流冲刷为主;烧蚀边缘则以SiC基体的热氧化为主。C/C-SiC复合材料在氧-乙炔条件下的烧蚀机制是热化学烧蚀、热物理烧蚀和机械冲刷的综合作用。  相似文献   

4.
采用反应熔渗工艺(RMI)快速制备了不同碳化硅含量的C/C-SiC复合材料,通过氧-乙炔烧蚀试验,测试了材料的烧蚀性能。利用SEM/EDS表征了复合材料烧蚀后的表面形貌和成分,分析了碳化硅含量对复合材料烧蚀性能的影响。结果表明,随着基体中碳化硅含量的提高,烧蚀过程中生成的二氧化硅保护膜更加致密,导致C/C-SiC复合材料的烧蚀率逐渐降低。在此基础上,利用优化工艺制备了密度均匀的大尺寸C/C-SiC构件,经过地面热试车考核,构件接近零烧蚀,满足发动机热试车的应用。  相似文献   

5.
预制体及基体对C/C复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了预制体结构及其成型工艺和基体类型对C/C复合材料的力学性能、烧蚀性能和微观结构的影响。结果表明,它们对C/C复合材料的拉伸和压缩强度影响不显著,而对剪切性能影响明显。采用CVD成型工艺和树脂炭基体,对于二维预制体,C/C复合材料的剪切强度可达19MPa;对于准三维预制体,C/C复合材料层间剪切强度可达20MPa。不同类型的基体炭对复合材料的耐烧蚀性影响不同,CVD炭具有优异的抗烧蚀性能,树脂炭与沥青炭的抗烧蚀性能较差。采用先沉积后树脂浸渍炭化补充增密,可制备综合性能优异的热结构复合材料。  相似文献   

6.
采用反应熔渗法(RMI)将不同密度的C/C坯体制备成C/C-SiC复合材料,利用化学气相沉积法(CVD)在C/C-SiC复合材料表面进行炭沉积形成热解炭涂层,选用HS-19A型肖氏硬度计测试其硬度,利用MM1000-II型摩擦磨损实验机测试摩擦性能,研究热解炭涂层对C/C-SiC复合材料孔隙率、硬度及摩擦性能的影响。结果表明:热解炭涂层可以有效地降低孔隙率,提高硬度,减小摩擦系数。  相似文献   

7.
以降低传统碳/酚醛复合材料密度为目的,在对复合材料密度进行理论分析计算的基础上,采用在酚醛树脂中添加轻质填料的方法制备低密度碳/酚醛复合材料,按照正交实验法对轻质填料含量以及复合材料制备工艺参数进行分析与优化。结果表明,分别采用聚丙烯腈基碳纤维和粘胶基碳纤维作为增强材料,研制的碳/酚醛复合材料的密度分别为1.339 g/cm~3和1.211 g/cm~3,拉伸强度分别为294 MPa和131 MPa,剪切强度分别为15.0 MPa和14.7 MPa,室温热导率分别为0.215 W/(m·K)和0.476 W/(m·K),200℃热导率分别为0.340 W/(m·K)和0.599 W/(m·K),氧乙炔线烧蚀率分别为0.011 mm/s和0.030 mm/s,复合材料密度降低的同时,其他性能满足固体火箭发动机喷管烧蚀防热材料的使用要求。  相似文献   

8.
以前驱体浸渍裂解(PIP)工艺制备的C/C-SiC-ZrC复合材料为研究对象,研究了C/C-SiC的高温裂解温度对C/C-SiC-ZrC复合材料的密度、开孔率、力学性能和抗烧蚀性能的影响。结果表明,C/C-SiC的高温裂解处理导致复合材料失重,开孔率增大,便于后续的前驱体浸渍;随着浸渍裂解周期数增加,三种C/C-SiC-ZrC复合材料最终达到相近的密度和开孔率。不同的高温裂解温度影响C/C-SiC的力学性能,1500℃裂解后的C/C-SiC复合材料具有较好的力学性能,而1600~1700℃裂解后的C/C-SiC复合材料的力学性能有所下降;最终制备C/C-SiC-ZrC复合材料的力学性能较C/C-SiC复合材料均有所提高,界面的改善是材料力学性能提高的主要原因。SiC及ZrC陶瓷基体在高温下形成的ZrO_2-SiO_2玻璃态熔融层起到了抗氧化冲刷的作用,最终C/C-SiC-ZrC复合材料均具有优异的抗烧蚀性能。  相似文献   

9.
为了研究SiC及其前驱体聚碳硅烷对聚合物浸渍裂解法(PIP)制备的C/C-ZrC-SiC复合材料的影响,本文以聚碳硅烷和有机锆分别为SiC和ZrC的前驱体,利用PIP法制备了C/C-ZrC和C/C-ZrC-SiC两组复合材料,采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对材料的微观结构进行分析,在氧乙炔环境下考核了复合材料的抗烧蚀性能,并选用热分析仪对两组材料的热物理性能进行对比分析。结果表明,聚碳硅烷因其较高的SiC产率可以提高C/C-ZrC-SiC复合材料中陶瓷基体的致密程度,其产物SiC改善了陶瓷基体与碳基体的界面结合状态。氧乙炔烧蚀120 s后,与C/C-ZrC相比,SiC的加入使C/C-ZrC-SiC表现出更优异的抗烧蚀性能,主要归功于烧蚀中心表面熔融ZrO_2保护层和烧蚀边缘致密SiO_2层的形成。此外,SiC有利于提高材料的导热性能,同时降低其热膨胀系数。  相似文献   

10.
以轻质粘胶基碳毡为增强体,采用压力浸渍树脂/常压炭化工艺(PIC)引入树脂碳作为基体,从而制备出体密度、开孔率分别为1.05 g/cm~3和35.65%的C/C隔热材料,并对材料的力学性能、热物理性能和隔热性能进行了测试分析。结果表明,室温下C/C隔热材料的水平剪切强度和弯曲强度分别为2.97 MPa和11.7 MPa,其载荷-位移曲线呈典型的"抛物线"状,表明材料的韧性较好;随着温度的升高,C/C隔热材料的比热容和热导率均逐渐增大,但后者的增幅更小,1000℃时其值仅为0.922 W/(m·K);平均热膨胀系数则随着温度的升高呈现先升后降的趋势,RT~1000℃的平均热膨胀系数仅为1.326×10~(-6)/℃;通过氧乙炔静态烧蚀试验测试C/C隔热材料的烧蚀隔热性能,当烧蚀面的最高温度达到2450℃时,其背面温度仅为357℃,表明材料具有良好的隔热性能。  相似文献   

11.
石墨粉对LSI法制备C/C-SiC复合材料性能的影响   总被引:1,自引:0,他引:1  
在酚醛树脂中添加石墨粉,采用模压法制备出CFRP材料,在不同温度热解转化为C/C复合材料,然后反应熔渗(LSI)硅制备出C/C-Si C材料,研究了石墨粉对材料的微结构、毛细渗透行为及机械性能的影响。结果表明,热解后C/C材料中的石墨粉和碳基体之间形成了剥离型微裂纹,但层间结合良好,且弯曲性能和未添加石墨粉C/C材料相当,同时石墨粉的添加降低了C/C材料毛细增重速率。热解温度对C/C材料的孔隙率、弯曲强度和毛细渗透行为均有显著影响。不同条件C/C材料硅化后制备的C/C-Si C弯曲强度基本相当,在120~130 MPa,表明热解温度和石墨粉对C/C-Si C材料的弯曲性能没有明显影响。  相似文献   

12.
采用化学气相渗透(CVI)和液相浸渍裂解(PIP)混合工艺制备出三维针刺C/C-SiC(材料A、B)和C/C(材料C)复合材料,研究了复合材料的力学、抗热震和耐烧蚀等性能以及SiC涂层对烧蚀性能的影响,并采用扫描电子显微镜分析了材料的断裂面和烧蚀面形貌。结果表明,材料A(SiC基体含量较高)的性能较好,其弯曲强度、线烧蚀率及抗热震系数分别达到238.4 MPa、3.0×10~(-3)mm/s和35.3 kW/m。沉积SiC涂层后,材料A、B和C的线烧蚀率较之前分别降低33.0%、12.5%和37.5%。采用材料A+SiC涂层方案研制的喷管延伸段构件,进行780 s地面热试车考核,试车后构件结构完整。  相似文献   

13.
采用交联剂对聚碳硅烷(PCS)先驱体进行改性,以改性先驱体配置溶液制备了C/SiC复合材料。在制备过程中,由于改性先驱体较高的陶瓷产率,缩短了复合材料基体致密化周期,气孔率降低到7.2%,密度提升到2.01 g/m~3。在改善试样显微结构的同时,改性先驱体能够明显提升C/SiC复合材料力学性能,弯曲强度提高到459.4 MPa,断裂韧性提升到13.6MPa·m~(1/2),相比单组分PCS先驱体分别提高了51.9%和32.0%。烧蚀性能考核表明,试样的线烧蚀率和质量烧蚀率分别为8.3×10~(-3) mm/s和4.3×10~(-3) g/s,相比单组分PCS制备的试样分别降低了85.7%和73.1%。通过对试样内部显微结构和考核后形貌进行分析,结果表明试样力学和烧蚀性能的提升主要得益于致密化的基体以及基体对纤维很好的保护作用。  相似文献   

14.
对采用碳化硅作为基体,碳纤维编织体作为复合增强材料的碳/碳化硅复合材料的性能进行了研究与验证。结果表明,该复合材料在常温下,弯曲强度大于350MPa,拉伸强度为190MPa,具有较好的抗氧化性。静力学环境下,产品的安全系数可达到3.7;固体发动机尾焰烧蚀条件下,质量损失率3%;电弧风洞烧蚀环境中,质量损失率0.3%,几乎零烧蚀。  相似文献   

15.
预制体中添加碳化钨的C/C复合材料结构与烧蚀性能   总被引:1,自引:0,他引:1  
采用在炭纤维预制体中添加WC粉末和基体炭增密的方法,制备了添加WC粉末的C/C复合材料.采用电弧驻点烧蚀试验,考察了材料烧蚀性能,并用扫描电镜观察了其结构和烧蚀后表面形貌,探讨了其烧蚀机理.结果表明,添加WC粉末的C/C复合材料的高温烧蚀包括:C/C复合材料中炭纤维和炭基体中炭与烧蚀气流中氧化气氛的反应;WC的氧化及熔...  相似文献   

16.
浸渗时间对C/C-SiC复合材料显微结构和力学性能的影响   总被引:2,自引:0,他引:2  
采用反应熔体浸渗法,经不同的浸渗时间渗Si制备了3种不同的C/C-SiC复合材料,测试了材料的增重率、体积密度、断裂韧性及三点弯曲强度,分析了材料的物相组成,并观察了材料的显微结构.结果表明,在得到的C/C-SiC复合材料中,主要存在纳米级和微米级2种尺度的SiC颗粒,随着浸渗时间延长,材料的体积密度和SiC含量随之增加,但抗弯强度随之降低.浸渗时间从0.5 h延长到5 h,材料的密度从2.16 g·cm-3增加到2.21 g·cm-3,SiC的质量百分含量从21.54%增加到31.72%,三点弯曲强度从133 MPa下降到86 MPa,3种复合材料均表现出一种类似于金属材料的非脆性断裂行为,断裂应变约为1.3%,断裂韧性为9~10 MPa·m1/2.  相似文献   

17.
采用径向针刺工艺制备了近净尺寸针刺C/C喉衬预制体,通过热梯度CVI和树脂浸渍碳化复合工艺对预制体进行了致密,利用μ-CT、光学显微仪表征了C/C喉衬材料微观孔隙和热解碳织构,分析了喉衬材料的弯曲性能。结果表明,径向针刺过程形成的损伤型孔隙通道与碳源气体传输方向一致,提高了碳源气体传输效率,使径向针刺喉衬CVI增密效率比传统轴向针刺喉衬提高10.9%。预制体近净尺寸成型缩短了烧蚀区域碳源气体的渗透距离,喉衬材料烧蚀区域形成了高织构热解碳,有利于喉衬烧蚀性能的提高。径向针刺喉衬的轴向弯曲强度比轴向针刺喉衬提高150%。  相似文献   

18.
为提高石墨的耐烧蚀性能,利用压力浸渗方法将AlSi合金渗入石墨孔隙中获得石墨/AlSi耗散防热复合材料。利用小型烧蚀实验发动机开展了不同推进剂和压强工况下石墨/AlSi耗散防热复合材料喉衬和C/C喉衬的对比烧蚀试验研究,总结了推进剂铝含量、燃烧室压强对相对烧蚀性能影响,并分析石墨/AlSi耗散防热复合材料的抗烧蚀机理。结果表明,石墨/AlSi耗散防热复合材料喉衬线烧蚀率低于相同状态下C/C材料喉衬的线烧蚀率,其中在铝质量含量5%、压强12.5 MPa工况中石墨/AlSi喉衬线烧蚀率降低92%。分析认为石墨/AlSi耗散防热复合材料的抗烧蚀机理主要为:石墨孔隙内的AlSi合金通过熔化和气化相变吸收热量,降低了石墨基体的热负载;AlSi合金的熔化后在表面形成的液态膜阻碍了燃气中氧化性成分向石墨基体中的扩散;合金气化产生的Al、Si蒸气在引射作用下注入边界层,与边界层中氧化组分发生反应,降低其中的氧化组分浓度;AlSi合金氧化后形成的Al_2O_3-SiO_2玻璃态熔融层减弱燃气对喉衬机械剥蚀作用。最终石墨/AlSi耗散防热复合材料喉衬表现出优异的抗烧蚀性能。  相似文献   

19.
热解炭含量对C/C复合材料性能的影响   总被引:5,自引:0,他引:5  
研究了不同热解炭含量对C/C复合材料性能的影响。对采用CVD工艺致密到不同密度,具有不同热解炭含量的2D炭布针刺体试样,利用沥青高压浸渍炭化工艺增密至相同的最终密度,然后对其进行力学、热学性能及等离子烧蚀试验。试验结果表明,热解炭含量高的C/C试样具有较好的力学、烧蚀及导热性能。  相似文献   

20.
以PZC为有机锆先驱体原材料,采用A,B,C三种PIP工艺路线制备了不同ZrC含量的C/Si C-ZrC复合材料,并对C/Si C-ZrC复合材料的组成、微观结构、力学性能、烧蚀性能及作用机理进行了测试和分析。结果表明,有机锆先驱体制备的C/Si C-ZrC复合材料烧蚀性能有大幅提高,但其力学性能却存在一定程度的下降,并且随着ZrC含量的增加,C/SiC复合材料的力学性能呈现出逐渐降低的趋势,其质量烧蚀率和线烧蚀率呈现出先减小后增大的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号