首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
太阳高能粒子(SEP)事件的定量数值预报是空间态势感知的重要方面之一。SEP事件主要来自于日冕物质抛射(CME)所驱动的激波扩散加速(DSA)。文章在三个有关模型的基础上,结合1 AU处卫星的太阳风观测参数和日冕仪的CME观测参数,建立了一套可用于预报SEP事件的数值方法。利用该方法对一次SEP实例进行数值模拟,并将模拟结果与GOES卫星观测结果进行比较。结果表明:数值模拟得到的>10 MeV的高能粒子的通量和观测较为吻合,>100 MeV的高能粒子的通量高于观测值。针对此事件进一步开展了不同CME抛射速度和不同内边界背景太阳风温度条件下的集合模拟试验,结果表明:CME抛射速度对SEP事件中高能粒子通量和能谱影响较大,而内边界背景太阳风温度的改变对于高能粒子通量和能谱的影响几乎可以忽略不计。  相似文献   

2.
空间等离子体环境中的高能带电粒子加速机制   总被引:1,自引:1,他引:0  
空间环境中充满能量从几十keV到几MeV的高能带电粒子,这些粒子可导致在轨航天器表面和内部带电甚至单粒子效应,从而引发航天器故障。高能粒子的产生和日地空间环境中的爆发现象如耀斑、磁层亚暴等密切相关。文章综述了与这些爆发现象相关的磁重联、激波和等离子体波动等加速带电粒子的物理过程。  相似文献   

3.
太阳耀斑和日冕物质抛射不仅是太阳物理研究中的重要课题,也是空间环境探测研究的重要对象。文章提出了一种在日地L4/L5点布置一颗探测器开展太阳立体探测的技术构想,相较于目前国际上在地球轨道或日地L1点布置探测器只能沿日地连线方向获取正对地球的太阳活动信息而言,该构想具有更大的优势,能够从侧面对整个日地连线上的日冕物质传播和演化规律进行立体监测,获取单点探测无法得到的立体信息,从而大大丰富太阳磁场、太阳活动等信息。文章在国外相关任务调研的基础上,对达到L5点的轨道转移方式和代价进行了初步计算,提出了探测器总体方案设想,并对我国开展L4/L5点太阳立体探测给出了未来发展建议。  相似文献   

4.
由于缺少磁场和大气,宇宙线高能粒子轰击月壤可以形成月球特有的强中子辐射环境,并对航天员和电子设备造成潜在威胁。文章采用蒙特卡罗方法仿真研究宇宙线高能粒子辐射与月壤成分核反应产生的次级中子能谱特征,给出不同太阳活动、不同月壤深度下月球中子能谱特征和空间分布特征。仿真结果表明,宇宙线高能粒子导致的次级中子随着月壤深度的增加先增大后减小,大约在1 m深度达到最大值,深度越深银河宇宙线诱发的中子贡献越大。相关结果可为我国后续载人月球探测任务的辐射防护设计提供参考。  相似文献   

5.
众眼看宇宙     
王琴 《航天》2012,(4):62-63
2012年伊始,NASA就将这幅高清的X级太阳耀斑照片赠予世人欣赏。太阳耀斑(又称色球爆发)是太阳表面突然释放能量,喷射出高能带电粒子而形成的壮观场面,其寿命仅有几分钟至几个小时。  相似文献   

6.
深空条件下航天器内的辐射环境研究   总被引:2,自引:0,他引:2  
深空存在具有各种能量分布的粒子,这些能量分布范围很宽的粒子构成了深空环境下航天器外部的空间辐射环境。深空条件下的高能粒子会穿透航天器舱壁材料,通过射线与物质材料的相互作用,在航天器内产生二次粒子,形成由初级粒子、次级粒子叠加的混合辐射场的辐射环境。文章分析研究了高能α粒子及Fe离子在屏蔽材料中的输运过程,得到了在这些介质中的射程与能量关系及产生的二次粒子产额,为控制航天器内的辐射环境提供支撑。  相似文献   

7.
通过搭载在某MEO、IGSO轨道卫星上的单粒子探测器对XQR2V3000 FPGA配置存储器进行了在轨单粒子翻转探测。利用一种基于复位计数统计的FPGA配置存储器单粒子翻转的监测方法,并对在2016年太阳活动平静期以及2017年9月6日太阳耀斑爆发期的2颗MEO卫星以及1颗IGSO卫星的XQR2V3000 FPGA配置存储器单粒子翻转次数进行统计,依据卫星轨道根数获得了翻转事件的空间分布。结果表明,在太阳平静期,设备等效铝屏蔽厚度为6 mm的情况下,处于MEO轨道和IGSO轨道的XQR2V3000配置存储器单粒子翻转率分别为 0.513 次/(器件·天)和0.491次/(器件·天),分别为CREME96模型预测结果的22.4%和16.9%,两种轨道的翻转率相当。在太阳耀斑爆发期间,MEO与IGSO轨道单粒子翻转率分别上升为2.5次/(器件·天)和 5次/(器件·天) ,比平静期高了一个数量级。试验所得的单粒子翻转率可为相同轨道卫星电子设备单粒子翻转率的预示提供有效的参考。  相似文献   

8.
当前的太阳耀斑预报模型主要通过统计关系建立,直接将从太阳黑子群磁图中提取的特征参量作为模型输入,系统的自主性低,导致图像数据中包含的与太阳耀斑相关的高阶抽象信息难以被充分利用,进而限制模型预报的精度。为解决当前太阳耀斑预报中数据利用不充分的问题,文章将海量太阳观测数据与先进的人工智能技术结合,综合利用太阳活动区磁场观测图、磁场特征参量和对应的耀斑事件标签,并借助全连接神经网络高精确率以及卷积神经网络高召回率和可有效提取高层语义信息的优点,构建基于深度学习的多模态太阳耀斑预报模型。实验证明该模型的主要评价指标结果比其他模型至少提高7.8%。  相似文献   

9.
文章利用地球同步轨道GOES6~12卫星1986-2006年约两个太阳活动周期的高能电子角通量密度数据,分析了在地磁平静期或不同程度磁暴期间高能电子通量的变化,为建立更精确的航天器内部充电动态模型奠定基础。研究结果表明:地球同步轨道高能电子通量随太阳活动周期的变化规律表现为,在太阳活动极大年通量较低,极小年反而较高;高能电子通量随季节的变化规律表现为,在冬至和夏至附近通量达到最低值,春秋分附近达到最高值;Dst指数最小时,对应的高能电子通量一般较低。  相似文献   

10.
文章利用地球同步轨道GOES~12卫星1986-2006年约两个太阳活动周期的高能电子角通量密度数据,分析了在地磁平静期或不同程度磁暴期间高能电子通量的变化,为建立更精确的航天器内部充电动态模型奠定基础.研究结果表明:地球同步轨道高能电子通量随太阳活动周期的变化规律表现为,在太阳活动极大年通量较低,极小年反而较高;高能电子通量随季节的变化规律表现为,在冬至和夏至附近通量达到最低值,春秋分附近达到最高值;Dst指数最小时,对应的高能电子通量一般较低.  相似文献   

11.
Daibog  E. I.  Logachev  Yu. I.  Kahler  S. W.  Kecskemety  K. 《Cosmic Research》2004,42(4):362-369
Time profile of the fluxes of energetic solar particles generated by solar flares (including their phase of decline) is formed to a large extent by the structure of the interplanetary magnetic field and its irregularities that move away from the Sun with the solar wind velocity. When propagation is a pure diffusion, the solar particle fluxes decay after the maximum in a power-law manner. At the same time in many cases this decay is exponential, which is indicative of a considerable role played by the convective sweep of particles and their adiabatic deceleration in the expanding solar wind. In this paper we consider the events with long exponential decays and newly discovered series of successive events with identical exponential decays lasting for one to two weeks or more. They allow us to assume that the interplanetary space is stable and homogeneous during this period.  相似文献   

12.
Events in energetic solar protons with the energy > 4 MeV at the stage of their decay are considered for the period from 1974 to 2001. It is shown that in the events with the exponential shape of decay for west flares (relative to the observation point), the characteristic decay time τ and the power index γ of the energy spectrum decrease with an increase in the angular distance between the observer and the source of the particles on the Sun, while this effect is absent for east flares.  相似文献   

13.
In order to predict space weather effects, solar flares are often used as precursors of magnetic storms on the Earth. In particular, possible relation between the solar flare importance and magnetic storm intensity is discussed in some papers. However, published results contradict each other. We compare the published results on the flare-storm dependence and discuss possible causes of this disagreement: (1) different intervals of observation, (2) differing statistics, and (3) different methods of identification of events and their comparison. Our analysis has shown that the fact of occurrence and the magnitude of a geomagnetic storm cannot be determined, generally, using only the solar flare importance. However, analyzing additional information on the coronal mass ejection (CME), associated with the geomagnetic storm, one can offer an algorithm for the storm magnitude prediction on the basis of flare importance.  相似文献   

14.
Beyond the Earth's atmosphere, galactic cosmic radiation (GCR) and solar energetic particles (SEPs) are a significant hazard to both manned and robotic missions. For long human missions on the lunar surface (months to a year) a radiation shelter is needed for dose mitigation and emergency protection in case of solar events. This paper investigates the interaction of source protons of solar events like those of February 1956 that emitted many fewer particles with energies up to 1000 MeV and of the October 1989 event of lower protons energy but higher fluence, with the lunar regolith and aluminum shielding of a lunar shelter. The shelter is 5 m in diameter and has a footprint of 5×8 m and a 10 cm thick aluminum support structure, however, actual thickness could be much smaller (~1–2 cm) depending on the weight of the regolith shielding piled on top. The regolith is shown to be slightly more effective than aluminum. Thus, the current results are still applicable for a thinner aluminum structure and increased equivalent (or same mass) thickness of the regolith. The shielding thicknesses to reduce the dose solely due to solar protons in the lunar shelter below those recommended by NASA to astronauts for 30 day-operation in space (250 mSv) and for radiation workers (50 mSv) are determined and compared. The relative attenuation of incident solar protons with regolith shielding and the dose estimates inside the shelter are calculated for center seeking, planar, and isotropic incidence of the source protons. With the center seeking incidence, the dose estimates are the highest, followed by those with isotropic incidence, and the lowest are those with the planar incidence.  相似文献   

15.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

16.
This paper presents the doses levels expected in orbits in chart form, covering the range 300-800 km of altitude and 0-90 degrees of inclination behind shieldings similar to the Hermes spacecraft and the EVA spacesuit matter distributions. These charts allow users to rapidly find the radiobiological dose received in the most critical organs of the human body either in normal situations or during a large solar event. Outside the magnetosphere, during interplanetary or lunar missions, when the dose received during crossing of the radiation belts become negligible, the dose is due to galactic cosmic rays (GCR) and solar flares. The correct radiobiological assessment of the components of this radiation field becomes a major problem. On the Moon a permanent ground-based station can be shielded by lunar materials against meteoroids and radiations. The radiobiological hazard, essentially linked to the solar flare risk during the transfer phase and the extra-station activities, may be solved by mission planning. For interplanetary flights the problem comes from both increased risk of solar events and from the continuous exposure to GCR. These energetic particles cannot be easily stopped by shieldings; cost considerations imply that more effective materials must be used. Impact on the vehicle design and the mission planning is important.  相似文献   

17.
All significant short-term disturbances of the near-Earth space are caused exclusively by solar flare events and regions in the solar corona with the magnetic field open into the interplanetary space (coronal holes). Flare processes occur as a consequence of the interactions of new emerging magnetic fluxes within (flares) and outside (filament ejections) the active regions with already existing magnetic fields. The observation of emerging new magnetic fluxes and the estimate of their magnitude and the emerging rate allow one to forecast solar flares and filament ejections and estimate their degree of geoeffectiveness. The main agents that visualize the propagation of disturbance from solar flares and filaments in the solar corona and the interplanetary space are coronal mass ejections, the characteristics of which ideally allow one to estimate the possible disturbance of the geomagnetic field, the possible growth of high-energy charged particle fluxes in the near-Earth space. For successful forecast of geoeffective active phenomena on the Sun and their consequences in the near-Earth space, it is necessary to know the situation on the Sun for the last 3 days taking into account the development and characteristics of the current cycle and the epoch of solar activity.  相似文献   

18.
In 2001–2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号