首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
针对多星座卫星组合导航,提出了一种双重自适应联合卡尔曼滤波算法,采用描述机动载体运动的"当前"统计模型,首先建立一种基于载体加速度方差自适应的动态定位卡尔曼滤波模型,并分别对GPS,GLONASS和GALILEO系统设计相应的自适应子滤波器,然后采用有重置的联合自适应滤波器对各个子滤波器进行数据融合处理,各子滤波器的信息分配系数根据各卫星导航系统输出的几何精度因子(GDOP)进行自适应调节.通过对GPS/GLONASS/GALILEO多星座组合导航系统的仿真,分析对比了加权平均滤波、常规联合滤波和本文提出的双重自适应滤波.结果表明:该双重自适应算法有效提高了组合导航系统的精度和可靠性,能更好地适应于量测噪声不断变化的卫星组合导航系统.  相似文献   

2.
分析了INS/CNS/GNSS组合导航系统信息结构的特殊性 ,指出在此情况下应用联邦滤波器进行状态估计的信息不对等。针对此类情形 ,设计了几种滤波器的结构 ,分析了所设计滤波器的信息构成及信息的分配与融合 ,并尝试提出伪联邦滤波器的概念。本文所讨论的情形及设计的滤波器结构可以推广到一般的同类情形 ,并应用到相似的多传感器信息融合系统中  相似文献   

3.
王小旭  赵琳 《宇航学报》2010,31(11):2503-2511
针对扩展卡尔曼滤波器(EKF)在系统模型不确定时存在鲁棒性差、精度低的问题,设计了一种基于交互式多模型(IMM)的自适应融合滤波(AFF)算法。IMM\|AFF算法采用两个模型来描述系统结构,且与每个模型相对应的Sage\|Husa滤波器和强跟踪滤波器(STF)独立并行工作,系统的状态估计则是两种滤波器估计的模型概率加权融合。IMM\|AFF算法兼具Sage\|Husa滤波器状态估计精度高和STF对系统模型不确定具有强鲁棒性的优点,克服了两种滤波器各自单独使用时的缺点。将IMM\|AFF算法应用于INS/GPS组合导航系统的仿真结果表明,IMM\|AFF算法的滤波精度和鲁棒性均明显优于目前工程应用中的EKF,特别是大大提高了INS/GPS系统的定位 精度 。
  相似文献   

4.
随着对飞行器飞行精度和可靠性要求的提高,单一系统已无法满足系统要求,而采用先进的算法,利用信息融合技术将导航系统进行组合,取长补短,提高系统的综合性能成为主流,并得到迅猛发展。导航系统也呈现多信息化、智能化、集成化的发展趋势。本文根据捷联惯导系统(SINS)和塔康系统(TACAN)不同的导航特性,在卡尔曼滤波的基础上,将二者组合起来,编写SINS/TACAN组合导航的滤波算法,并对该组合导航系统进行仿真,仿真结果表明:卡尔曼滤波下的SINS/TACAN组合导航系统,有很高的可行性。  相似文献   

5.
多星座组合导航自适应联合卡尔曼滤波算法研究   总被引:1,自引:0,他引:1  
孙永荣  吴玲  赵伟  刘建业 《宇航学报》2009,30(5):1879-1884
针对多星座卫星组合导航,提出了一种自适应联合卡尔曼滤波算法,采用描述机动载体运动的“当前”统计模型,直接从各卫星导航系统接收机输出的定位信息入手,将各种误差因素的影响等效为一个总误差,建立一种动态定位的自适应卡尔曼滤波模型。为了进一步提高滤波器的动态性能,通过引入调整系数、加权因子和自适应调节量对自适应滤波算法进行了改进,并分别对GPS、GLONASS和GALILEO系统设计了自适应子滤波器,然后采用联合滤波算法对各个子滤波器进行数据融合处理,最后对GPS/GLONASS/GALILEO组合导航系统进行了仿真验证,结果表明,该算法增强了滤波器的跟踪能力,改善了滤波效果,提高了定位精度。
  相似文献   

6.
《航天控制》2021,39(1):8-14
针对GNSS/SINS组合导航系统在全球导航卫星系统(GNSS)失效情况下,系统导航误差会因捷联式惯性导航系统(SINS)的误差积累而迅速扩大的问题,提出一种基于卡尔曼滤波(KF)的GNSS/SINS/GC/VL松组合导航系统及算法。该算法利用引入的航向和航速信息建立滤波方程,可以实现在滤波后对SINS进行误差修正。仿真结果表明,有陀螺罗经和计程仪辅助的GNSS/SINS组合导航系统在GNSS失效情况下,其定位误差比传统GNSS/SINS松组合的定位误差小。  相似文献   

7.
针对空间转移飞行器的工作环境和特点,分析了捷联惯性导航系统(SINS)、GPS和星敏感器(SS)的优缺点,提出了基于SINS/GPS/SS的空间转移飞行器自主导航系统的信息融合方法,该方法可取长补短,将GPS定位和星敏感器定姿精度高的优势辅助于捷联惯导系统,建立了组合导航滤波模型,利用联邦滤波组合导航中各子滤波器没有私有状态变量的特点,改进了联邦Kalman滤波器,可动态地选取并优化信息分配因子,便于实时处理。仿真结果表明,改进的联邦滤波算法能充分运用各导航系统的信息进行信息互补和信息融合,比传统的联邦滤波算法有更高的估计精度,可满足空间转移飞行器长时间的自主导航要求,是一种较理想的自主导航方案,具有重要的工程应用价值。  相似文献   

8.
基于天文角度观测的机载惯性/天文组合滤波算法研究   总被引:2,自引:0,他引:2  
针对采用天文/惯性位置组合时对导航选星有特殊要求,提出了基于天文角度观测信息的机载惯性/天文组合滤波方案及算法.对基于天文角度观测的INS/CNS组合导航系统的原理进行了充分阐述,分析并建立了基于单星或多星观测条件下的组合导航系统线性化量测方程,并针对角度观测时高度通道不可观的特点,增加了气压高度输出为系统的观测量,并在此基础上设计了组合滤波器算法.最后进行了组合导航系统仿真,并通过协方差分析的方法对比分析了单星和双星观测条件下的滤波性能.仿真结果表明,即使是在单星观测条件下,组合导航系统也能获得较好的定位精度;若观测星数增多,则可以大大提高系统性能,表明该组合导航系统设计方案是成功可行的.  相似文献   

9.
针对传统的惯性/卫星(SINS/GNSS)弹载组合导航系统导航信息源单一、易受干扰且鲁棒性差等问题,引入了雷达高度表(RA)作为新的信息源参与导航信息融合,并在发射惯性系下设计了一种基于联邦滤波的SINS/GNSS/RA弹载多源组合导航算法。仿真结果表明:本算法构建的组合导航系统具有良好的导航性能,在GNSS受干扰失效后,相较于传统SINS/GNSS组合导航系统,SINS/GNSS/RA组合导航系统依靠SINS/RA子滤波器,依旧能够在一定的时间范围内为导弹提供有效的定位信息,其表现出了更高的鲁棒性和可靠性。  相似文献   

10.
针对北斗/捷联惯导组合导航,提出一种基于人工蜂群ABC(Artificial Bee Colony)算法的反向传播BP(Back Propagation)神经网络算法。首先,在北斗卫星导航系统接收机正常接收信号时,将捷联惯性导航解算信息(速度、位置)作为网络输入,卡尔曼滤波输出信息(速度、位置校正量)作为网络输出,对ABCBP神经网络进行在线训练,建立ABCBP神经网络的映射数学模型。然后,在北斗卫星导航系统接收机信号失效情况下,将惯性导航解算信息作为网络输入,利用建立好的ABCBP神经网络预测输出校正量信息,以此来校正捷联惯导系统SINS(Strapdown Inertial Navigation System)。最后,通过飞机飞行半物理仿真实验验证该算法的性能。仿真结果表明,ABCBP神经网络算法在定位精度方面具有更加优越的性能。  相似文献   

11.
一种基于遗传RBF神经网络的智能容错滤波算法   总被引:1,自引:0,他引:1  
针对组合导航中标准卡尔曼滤波容错性能不足的问题,提出一种基于遗传RBF神经网络的智能容错滤波算法,其基本思想是通过RBF网络自动调节滤波增益来控制不确定性噪声的影响,进而提高滤波容错性。在RBF神经网络中,隐层单元与核函数宽度的选取对网络的性能具有重要影响,进而利用自适应遗传算法对其隐层单元数及核函数宽度进行了优化,隐层单元中心和输出层连接权值分别由K-均值聚类和最小二乘算法确定,最后得到精度较高且结构优化的RBF网络。为检验方法的应用效果,以SINS/GPS组合导航系统为例进行了仿真验证,实验结果表明遗传RBF网络容错滤波算法能在满足导航精度和计算量增加较小的前提下,比标准卡尔曼滤波具有更强的容错能力,由此也说明了方法的有效性。  相似文献   

12.
INS/GPS/TERCOM组合制导系统中的信息融合方法研究   总被引:10,自引:1,他引:10  
刘准  陈哲 《宇航学报》2001,22(3):26-32,61
提出由坐标变换、误匹配检测和卡尔曼滤波三个单元构成的一种新型INS/GPS/TERCOM系统优化结构,并对INS/GPS/TERCOM组合系统自适应联邦滤波信息融合和分散式信息融合两种算法分别进行了研究,将这两种算法与传统的集中滤波算法进行了比较。结果表明,系统无故障情况下三种方法精度相同;而在有故障情况下自适应联邦融合法优于另两种方法。  相似文献   

13.
模糊超球神经网络辅助组合导航融合算法   总被引:3,自引:0,他引:3  
研究了应用线性网络对组合导航多传感器信息进行融合的方法,在此基础上提出了一种神经网络组合导航容错算法。该算法将局部滤波器状态估计的模糊超球隶属函数引入网络,在线调整融合网络权值,实现全局估计的自适应性和容错性。仿真表明,该融合算法有较高的估计精度,在传感器故障时,能够及时检测出并在融合网络中予以隔离,不致影响全局估计。  相似文献   

14.
本文介绍一种基于多模自适应估计的联邦滤波器的原理和特点。设计了INS/CNS/GPS组合导航系统的联邦滤波算法 ,并首次将多模自适应估计方法运用到联邦卡尔曼滤波器中。此外 ,联邦滤波器算法中采用自适应调整信息分配系数的方法。仿真结果表明 ,与采用单一模型的联邦滤波算法相比 ,多模自适应方法与联邦滤波方法结合使用能大大提高导航系统的精度和可靠性。  相似文献   

15.
适于惯导系统初始对准的神经网络实时算法研究   总被引:3,自引:0,他引:3  
通常卡尔曼滤波器被用于解决惯导系统的初始对准问题。由于卡尔曼滤波的运算时间与系统阶次的立方成正比 ,所以当系统阶次较高时 ,滤波器会失去实时性。而神经网络具有函数逼近性能 ,实时性又好。为此 ,本文研究了一种基于扩展卡尔曼滤波原理的权值更新多层神经网络学习算法 ,对此算法进行了详细的推证 ,并将该算法运用到惯导系统的初始对准过程。仿真结果表明了这种神经网络结构用于惯导系统初始对准问题的有效性 ,既真正获得了与扩展卡尔曼滤波器相同的对准精度 ,又大大提高了系统的实时性  相似文献   

16.
对于车载全球导航卫星系统(GNSS)/捷联惯性导航系统(SINS)组合导航系统,针对GNSS失效而SINS单独工作时仅使用速度约束辅助SINS其纵向位置误差逐渐发散的问题,提出一种神经网络修正的速度约束辅助车载SINS定位算法。通过径向基函数(RBF)神经网络预测SINS纵向位置误差修正系数,以提高SINS单独工作时的定位精度;此外,提出一种限定记忆指数加权实时估计量测噪声的自适应滤波算法。在人为设置GNSS失效以及真实隧道场景下进行车载试验,结果表明本文算法能够在不停车情况下在线修正SINS纵向位置误差,相比于速度约束与卡尔曼滤波相结合的常规算法,有效地提高了GNSS失效时的车载SINS定位精度。  相似文献   

17.
将基于双状态传播器的状态χ2检验法(SCST)结合Fuzzy ARTMAP神经网络应用于GPS/INS紧组合导航系统故障的诊断和参数识别。首先,采用双状态传播器的状态χ2检验法对组合导航系统进行故障检测,得到故障的特征模式,并给出了双状态传播器重置时间间隔选择的充分条件;然后,利用Fuzzy ARTMAP神经网络结合特定的飞行器机动对故障模式进行分类,给出了一种新的分类方法;对于飞行器按照不同轨迹进行飞行的情况,也可有效的识别故障源。最后将分类的结果送入另一个Fuzzy ARTMAP神经网络进行故障参数的估计。仿真结果表明,针对组合导航系统中陀螺、加速度计、GPS信号的一度故障,此方法能有效进行检测和隔离,并能准确估计出故障发生时间和故障幅值。  相似文献   

18.
基于模糊自适应卡尔曼滤波的INS/GPS 组合导航系统算法研究   总被引:15,自引:2,他引:15  
针对车载组合导航系统量测噪声统计特性随实际工作条件的不同而变化的特点,提出了一种基于模糊自适应卡尔曼滤波的车载INS/GPS组合导航算法。该方法通过监视理论残差与实际残差的比值是否在一附近,应用模糊推理系统不断的调整量测噪声协方差阵的加权,对卡尔曼滤波的量测噪声协方差阵进行递推在线修正,使其逐渐逼近真实噪声水平,从而使滤波器执行最优估计,提高导航系统的精度。对车载组合导航系统的仿真结果表明,这种算法对时变的量测噪声具有较强的自适应性,进而精度比常规卡尔曼滤波也大为提高,是一种可行的车载组合导航算法。  相似文献   

19.
基于最优估计神经网络的惯导系统初始对准研究   总被引:9,自引:0,他引:9  
王新龙  申功勋  唐德麟 《宇航学报》2002,23(3):34-38,60
本文研究了一种基于卡尔曼滤波原理权值更新的多层神经网络学习算法,对此算法进行了详细的推证,并将该算法运用到惯导系统的初始对准过程。仿真结果表明了这种神经网络结构用于惯导系统初始对准问题的有效性,既可获得与卡尔曼滤波器相同的对准精度,又提高了系统的实时性。从而得到了利用神经网络解决惯导系统初始对准问题的一种有效算法。  相似文献   

20.
SINS/CNS组合导航系统的降阶模型研究   总被引:2,自引:0,他引:2  
在利用卡尔曼滤波器对数据进行处理时,其计算时间是由模型的状态矢量维数n决定的,每一步迭代的计算量与n3成正比。状态维数的减少会使计算时间大大缩短。本文首先介绍了SINS/CNS组合导航系统的动态模型,研究了基于奇异值分解的状态可观测度分析方法并提出一种改进的方法,在求状态变量的可观测度时,抛开了观测量,只利用可观测矩阵进行分析,然后应用该理论对SINS/CNS组合导航系统进行状态可观测度的分析,略去不可观测的状态分量,提出一种降阶的系统模型。仿真结果证明,降阶模型可以提供满意的导航精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号