首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对某大型主动引射高空模拟试验系统在不同流量固体火箭发动机稳定运行过程中的流场结构,采用二维轴对称雷诺平均方程和k-ε湍流模型进行了数值模拟,空间上采用二阶迎风格式进行耦合求解,时间上采用显式Runge-Kutta方法进行迭代推进。结果表明,对于某大型主动引射高空模拟试验系统,在仅仅启动引射器时,试验舱舱压约为6500 Pa,随着被试验发动机流量的增加,在流量较小无法启动扩压器之前,发动机喷管出口燃气流在扩压器内形成马赫环并进入引射器内,单纯凭借引射器的抽吸作用,使喷管出口高温燃气排入到大气中,此时试验舱舱压会略高于发动机零流量时试验舱舱压。在发动机流量增大到扩压器启动之后,发动机喷管出口气流经过扩压器和引射器内的激波系进行减速增压之后排入大气,由于扩压器和引射器的抽吸作用,试验舱舱压会迅速降低至远低于无发动机试验舱舱压。随着发动机流量的增加,试验舱舱压变高。  相似文献   

2.
多单元直排塞式喷管高度特性的数值模拟研究   总被引:2,自引:2,他引:2  
为了了解多单元直排塞式喷管的高度特性和选择好的塞锥型面设计方案,从曲线坐标下的三维平均雷诺N-S方程出发,用κ-ε两方程湍流模型封闭方程组,采用二阶精度无波动、无自由参数的耗散差分格式(NND格式),发展了模拟塞式喷管三维流场的数值程序。计算了圆形喉部方形出口内喷管和直排塞锥的流场及塞式喷管的高度特性,比较了优化型面与简化型面的高度特性,研究了塞式喷管高度补偿特性和截短塞锥与全长塞锥在高度特性上的差别及其产生原因。计算表明,塞式喷管在低空具有高度补偿能力;塞锥截短将给塞式喷管的性能带来损失,在低空尤为明显;从低于设计压比的某个压比开始,塞式喷管失去高度补偿能力而进人类似钟型喷管的膨胀状态,截短塞锥将使塞式喷管失去高度补偿能力的压比降低;简化设计的塞锥型面会带来性能上的损失。  相似文献   

3.
某上面级发动机高模试车时,喷管扩张段外壁面某处出现了氧化烧蚀,针对此现象进行了高模试车时的启动过程数值仿真研究,结果表明:试验状态和两种改进方案下,喷管内和扩压器内的流场均在0.1 s已经达到稳定状态,其马赫数和静压等流场参数不再随时间的推进而变化; 发动机在启动过程中,喷管出口的高温燃气均会倒流进入真空舱; 试验方案...  相似文献   

4.
固体火箭发动机喷管扩张段型面直接影响喷管内燃气膨胀和壁面压力分布,优化扩张段型面参数是提高喷管效率的有效途径。采用欧拉-拉格朗日数值方法仿真分析了椭圆-三次曲线型喷管在扩张段不同出口半角、初始扩张半角、长径比和扩张比等型面参数下的两相湍流特性及推力性能,数值模拟与基准型面喷管试验结果对比良好。不同型面参数喷管计算结果对比显示,出口半角对喷管推力影响较小,而初始扩张半角对其影响相对明显。流场特性分析表明,扩张段不发生内激波相交时,因避免燃气二次压缩而有利于提升喷管推力。与基准型面喷管相比,适当增大初始扩张半角和减小出口半角,能够改善扩张段内激波结构,提高喷管性能。此外,固定扩张比,长径比小于1.2时,随长径比增大,喷管出口轴向速度积分增长较快,推力收益增速明显。固定长径比,扩张比增大能提高喷管推力系数,但两相流损失随之增加,导致喷管效率降低,综合来讲喷管推力呈上升趋势。  相似文献   

5.
某固体火箭发动机点火启动过程三维流场一体化仿真   总被引:2,自引:0,他引:2  
以某固体发动机的燃烧室和喷管为一体化研究对象,采用三维流场控制方程,应用有限体积法计算了发动机点火启动过程中燃烧室和喷管内燃气的流场特性。发动机药柱上的着火点最初出现在药柱星角尖上,然后向四周扩展;在药柱点火初期,燃气压力波先于火焰峰到达喷管;随着燃烧室内燃气压力升高,压力沿轴向分布逐渐平缓;当喷管进口压力与出口背压比达到某一值时,喷管扩张段内出现一道激波,随着压力比的升高,激波最终移出喷管,燃气流速在喷管出口处达到最大值。  相似文献   

6.
蒸汽引射器是上面级火箭发动机进行高空模拟试验时获得真空的重要设备。采用数值模拟方法,通过Fluent对氢氧火箭发动机高空模拟试验用环形蒸汽引射器内部流场进行了研究,分析水蒸气两相流动及不同的入口工况和结构尺寸对极限真空压力的影响。考虑水蒸气的两相流动,在数值模拟中加入了水蒸气的凝结相变模型,并通过试验数据开展了模型验证,验证结果为:加入相变模型后极限真空压力降低,仿真结果更接近试验数据。在此基础上,研究了喷嘴入口工况和引射器结构尺寸对极限真空压力的影响,仿真结果表明:在引射器能够启动的条件下,降低蒸汽入口总压或提高入口总温,减小喷嘴出口壁厚或增大混合室直径,均能降低引射器的极限真空压力。因此,若想提高引射器真空度,可以通过改变入口工况或调整引射器结构尺寸来实现。  相似文献   

7.
超音速二次喉道扩压器气动特性研究   总被引:3,自引:0,他引:3  
张忠利 《火箭推进》2001,12(3):14-22
本文对超音速二次喉道扩压器的气动特性进行了研究,得出了气流的压力、速度与二次喉道结构及喷管的流动参数之间的关系。本文的研究对超音速二次喉道扩压器的设计和试验具有指导意义。  相似文献   

8.
氢氧发动机中激波与爆轰波热力参数计算分析   总被引:1,自引:0,他引:1  
大扩张比氢氧发动机在地面试车时喷管中可能会出现激波,而在起动时刻燃烧室或燃气发生器中则很容易产生爆轰波,其对发动机的结构与工作状态会产生较大的影响。为准确地分析激波与爆轰波对氢氧发动机的影响,从热力参数层面进行计算分析,所有的计算都考虑热化学反应的影响。首先,在传统一维管流模型基础上引入化学平衡模型来计算和分析推进剂混合比和燃烧室压力对喷管扩张段中激波位置及热力参数影响的一般规律;然后,采用基于热化学平衡模型的C-J爆轰理论,计算和分析推进剂混合比、初温及初压对爆轰波的影响规律。计算分析表明:喷管扩张段中的激波位置与燃烧室压力呈线性关系,激波处的温度比相对于不考虑热化学反应时要低28%~38%,而压力比无明显区别,压力比与温度比在化学当量混合比时最小;爆轰波强度随着初压的升高、初温的降低而增强,在化学当量混合比时最强,初温30 K,初压1 MPa时爆轰压力最高可达220 MPa,温度可达4 500 K,波速超过3 000 m/s。得到的这两种波的规律和特点可以为发动机工程设计人员提供一定的参考。  相似文献   

9.
本文对双钟形喷管作了临界评估。对双钟形喷管内基本流场的发展、基准喷管型面的设计方法和喷管延伸段的壁面反射进行了讨论。重点考虑从海平面状态到真空状态的转捩性质和它对喷管延伸段型面类型的依赖性。本文中给出了双钟型喷管的参数法数值模拟性能结果,这些计算用来研究双钟形喷管型面造成的附加性能损失,由欧洲航天局完成欧洲未来空间运输研究计划中的先进空间运输构思合同。强调了对双钟形喷管作进一步实验研究的必要性,从而更好地理解双钟形喷管的流场转捩。最后,讨论了转捩现象对系统的附加影响,通过改变室压来保证从壁面反射(海平面工作)到出口平面(真空工作)可控制分离点的突然跳跃,以改善性能。  相似文献   

10.
王一白  覃粒子  刘宇  廖云飞  王长辉 《宇航学报》2006,27(5):843-848,891
提出了圆转方塞式喷管的内喷管和塞锥型面的设计方法,内喷管用圆弧和抛物线近似,塞锥型面用抛物线和三次曲线近似,设计了一单元圆转方塞式喷管试验发动机。并采用气氧作氧化剂,气氢作燃料,进行了点火热试研究。介绍了试验发动机的结构与设计参数,以及试验系统组成和点火方式,给出了试验发动机照片、试验结果照片、测量参数曲线和性能数据处理。试验结果表明,试验发动机具有较高的热试效率:在三个不同工作高度下,喷管推力系数效率在93%-98%之间,说明圆转方塞式喷管的型面设计和试验方法是可行的。  相似文献   

11.
对Rao喷管型面(一种最大推力喷管型面)计算方法进行改造,使之在附加了最大推力鸡束条件(给定喷管出口直径)的情况下确定最大推力喷管型面,用这个方法给出了与某个已知喷管型面有相同的结构约束条件的喷管型面,本方法不同于其它方法的根本特点是:能为喉部具有平直段的喷管计算最大推力型面,对给定喷管出口半径时的设计条件很适用。  相似文献   

12.
闫峰 《火箭推进》2009,35(4):38-43
空气泄入式扩压器是发动机高空模拟试验设备,扩压器内流场情况是评价扩压器性能的重要依据。使用CFD软件分析计算了三种不同空气间隙(0mm,10mm,20mm)的扩压器模型,得到了不同间隙下扩压器内流场压力、温度等参数的分布情况。探讨了发动机喷管偏心对扩压器内流场造成的影响。计算结果与试验数据相吻合,证明扩压器模型正确。  相似文献   

13.
高温风洞收集口喷水降温数值仿真研究   总被引:1,自引:0,他引:1  
针对高温风洞中扩压器前段壁面防热问题,提出对高温气流外缘喷水降温的方法。通过在收集器入口与喷管出口间安装喷水环,利用液态水汽化吸热对高温气流进行降温,使扩压器壁面形成低温保护层。为了解该方法降温效果,本文利用DPM、组分输运等模型的耦合建立了超声速两相流CFD模型,对向超声速热气流喷水进行降温的过程进行了数值计算,计算结果表明,扩压器启动后有显著的降温保护效果。同时,为探索风洞排气背压和喷水量对风洞流场和壁面降温效果的影响,通过计算得出了变排气背压、变喷水量与降温效果之间的关系,为高温风洞收集口喷水降温装置的优化设计提供了参考。  相似文献   

14.
起动系统工作特性是液体火箭发动机研究的重点之一。对于采用火药起动器起动的液体火箭发动机,火药起动器后双喉道管路对起动系统的功效以及发动机的起动性能影响巨大。针对火药起动器以及起动器后双喉道燃气管路建立了计算模型,并通过试验数据对模型进行了验证。利用模型计算分析了火药起动器喷管喉部直径、起动器喷管扩张比、起动器及涡轮喷嘴喉径比等参数对火药起动器和燃气管路工作特性的影响。根据管路的工作特性,提出了一种双喉道燃气管路的设计方法。  相似文献   

15.
本研究的目的是确定导弹性能和喷管、延伸出口锥某些设计变量之间的参数关系。所讨论的导弹性能参数是有效载荷的变化(ΔPL)和由此产生的有效载荷与弹重之比(PL/GW)。本文对固定弹长和固定弹重两种导弹的结构进行了研究。两者均根据先进的技术设计和有风险的工作条件,并带有基准的金属延伸出口锥。对于固定弹长的导弹来说,最大的有效载荷变化效应是由第一级和第三级喷管潜入深度、第二级延伸出口锥半角、喷管/延伸出口锥连接面面积比和各级的飞出角等产生的。对于固定弹重的导弹来说,最大的有效载荷变化量主要受第二、三级喷管/延伸出口锥连接面面积比和延伸出口锥半角的影响。  相似文献   

16.
在脉冲爆震发动机工作过程中,爆震室压力处于强非定常状态。传统的型面不可调尾喷管与可调尾喷管都无法满足爆震室内压力的高频剧烈变化,进而导致较大的推力损失。为了提升现有脉冲爆震发动机型面不可调增推喷管性能,可以从爆震室中引出爆震燃气,通过无阀自适应控制将该二次流喷射在喷管扩张段,实时调节主流的有效扩张面积比,进而形成流体喷管。针对这种形式的流体喷管,在可爆混合物一定(当量比1.0,初始填充压力为0.1 MPa)的情况下,基于二维数值模拟,研究了不同二次流喷注条件(二次流喷注面积比、位置比)对主流流动状态及发动机推进性能的影响。计算结果表明:二次流的喷注改变了喷管有效流通面积;二次流在喷管扩张段喷注面积比越大,喷管的冲量提升率越大(相对于基准喷管冲量最大提升率为5.25%);二次流喷注位置越靠近喷管喉道处,喷管的冲量提升率越高。  相似文献   

17.
根据我国火星着陆巡视器工作过程,其着陆发动机需要在相对火星大气高速迎风运动中可靠点火。由于巡视器着陆时发动机喷管出口气流与火星稀薄气流方向相反,目前无法通过理论计算准确获得着陆过程的动态流场对发动机起动过程的影响量值。为验证火星着陆环境下发动机点火的适应性,需要建立发动机的火星大气来流试验环境模拟条件。为模拟发动机在火星大气条件下的相对运动,在真空舱内发动机保持固定,前端设置环形来流形成装置,该装置在发动机喷管周围形成一定速度的逆向来流包络。采用数值模拟技术结合试验验证方法,在火星着陆器巡视器主发动机性能考核试验中,针对来流的形成装置开展了设计研究工作。来流模拟试验测试数据表明:在确保贮箱供应压力稳定的条件下,来流模拟系统能够形成100~200 m/s速度的稳定来流,发动机在来流下能稳定启动工作,真空舱压力满足试验要求。  相似文献   

18.
为考察超音速环形蒸汽引射器启动特性,在地面试验台上,对采用不同蒸汽喷嘴的超音速环形蒸汽引射器模型启动关机过程中参数动态变化趋势进行了试验研究。试验结果表明:随着蒸汽喷嘴扩张角(0~20°)的增加,真空舱内极限真空压力增加,环引最小启动压力变化不明显,且关机段最小失稳压力低于启动段最小启动压力。  相似文献   

19.
水环境下喷管流动分离数值研究   总被引:1,自引:0,他引:1  
为了研究水环境下发动机喷管流动分离现象以及影响因素和规律,基于VOF多相流模型和SST k-ω湍流模型,建立了水环境下固体火箭发动机喷流流场数值仿真模型,并进行了不同喷管扩张比和NPR(燃烧室总压与环境压强之比)下的喷流流场数值模拟。通过数值仿真分析获得了水环境下喷管内发生流动分离时推力、压力特征和流场非定常变化特征,水环境下喷管内流动分离具有强烈的非定常振荡特征,分离激波会在分离点与发动机喷管出口之间呈现推进-返回-推进周期性振荡的流动特征。同时,获得了喷管扩张比和NPR对流动分离特征的影响规律,相同水深环境下不同扩张比喷管对流动分离点位置影响较小; NPR越小,流动分离点的位置处喷管扩张比越小。  相似文献   

20.
研制了一个用于模拟中国长征火箭二级的60 N推力氢氧发动机的缩比模型,并在北京航空航天大学真空羽流效应实验系统进行了试验。使用皮托管阵列测量了羽流压力场,结果显示当距发动机喷管出口的距离从140 mm增加到600 mm时,羽流场的最大压力从12 400 Pa降到了400 Pa。为验证CFD-DSMC混合的数值仿真方法,将试验结果与仿真结果进行了对比分析,二者一致性非常好。对比结果显示数值仿真方法在羽流效应分析方面的强大功能。研究获得了模型发动机羽流场的压力分布特性,可用于原型发动机的羽流效应分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号