首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Blair DG  Zadnik MG 《Astrobiology》2002,2(3):305-312
Over the past few years a series of searches for interstellar radio beacons have taken place using the Parkes radio telescope. Here we report hitherto unpublished results from a search for optical beacons from 60 solar-type stars using the Perth-Lowell telescope. We discuss the significance of the null results from these searches, all of which were based on the interstellar contact channel hypothesis. While the null results of all searches to date can be explained simply by the nonexistence of electromagnetically communicating life elsewhere in the Milky Way, four other possible explanations that do not preclude its existence are proposed: (1) Extraterrestrial civilizations desiring to make contact through the use of electromagnetic beacons have a very low density in the Milky Way. (2) The interstellar contact channel hypothesis is incorrect, and beacons exist at frequencies that have not yet been searched. (3) The search has been incomplete in terms of sensitivity and/or target directions: Beacons exist, but more sensitive equipment and/or more searching is needed to achieve success. (4) The search has occurred before beacon signals can be expected to have arrived at the Earth, and beacon signals may be expected in the future. Based on consideration of the technology required for extraterrestrial civilizations to identify target planets, we argue that the fourth possibility is likely to be valid and that powerful, easily detectable beacons could be received in coming centuries.  相似文献   

2.
Short-pulse SETI     
While most optical SETI experiments are configured to detect nanosecond pulses, the majority of their counterpart radio searches integrate for seconds to minutes, looking for unchanging narrow-band carriers or slowly pulsed modulation. The former approach is suggested as an effective way to stand out against stellar photon noise, while the latter approach is dictated by the dispersive effects of the interstellar medium as well as the high visibility of narrow-band signal components.In this paper, we consider effective signal strategies for those that produce, rather than simply search for, optical and radio beacons—signals that are designed to elicit responses from technological civilizations. By considering the communication problem from the point of view of the transmitters, rather than the receivers, we deduce some likely signal characteristics for beacons, and concommitant new strategies for SETI.  相似文献   

3.
Deliberate and unintentional radio transmissions from Earth propagate into space. These transmissions could be detected by extraterrestrial watchers over interstellar distances. This article analyzes the harm and benefits of deliberate and unintentional transmissions relevant to Earth and humanity. Comparing the magnitude of deliberate radio broadcasts intended for messaging to extraterrestrial intelligence (METI) with the background radio spectrum of Earth, we find that METI attempts to date have much lower detectability than emissions from current radio communication technologies on Earth. METI broadcasts are usually transient and several orders of magnitude less powerful than other terrestrial sources, such as astronomical and military radars, which provide the strongest detectable signals. The benefits of radio communication on Earth most probably outweigh the potential harm of detection by extraterrestrial watchers; however, the uncertainty regarding the outcome of contact with extraterrestrial beings creates difficulty in assessing whether or not to engage in long-term and large-scale METI.  相似文献   

4.
《Acta Astronautica》2014,93(2):534-537
The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.  相似文献   

5.
Searching for signatures of cosmic-scale archeological artifacts such as Dyson spheres is an interesting alternative to conventional radio SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archeology or sometimes cosmic archeology. A variety of interstellar archeology signatures is discussed including non-natural planetary atmospheric constituents, stellar doping, Dyson spheres, as well as signatures of stellar, and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is reviewed in the discussion of galactic signatures. These potential interstellar archeological signatures are classified using the Kardashev scale. A modified Drake equation is introduced. With few exceptions interstellar archeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.  相似文献   

6.
《Acta Astronautica》2014,93(2):547-552
The possibility of interstellar migration has been theorized during the past thirty years in the form of “Dysonships” that, using non-relativistic propulsion systems, are able to colonize the Galaxy in a relatively short time compared to the age of the Galaxy and consequently penetrate inside our solar system too. Observational evidence of this can be potentially obtained using the present state of the art of telescopes and related sensors, by following aimed searches and an expanded SETI protocol. Some transient and unrepeated radio signals recorded during standard SETI observations might be due to the transit of high-proper motion artificial sources of extraterrestrial origin, which are expected to show a very weak optical emission, a strong infrared excess and occasional high-energy bursts in the X and Gamma-ray wavelength ranges. Such artificial sources might show an interest to Earth by sending probes to visit it: such a possibility can be investigated scientifically as well.  相似文献   

7.
During 1980 and 1981, the 305-m radio telescope at the Arecibo Observatory in Puerto Rico was used to conduct a high resolution search for narrowband signals from the direction of 210 nearby solar type stars and 5 OH masers. For each star at least 4 MHz of bandwidth surrounding the 21-cm HI line and/or the 18-cm OH lines was studied with a spectral resolution of 5.5 Hz in both right and left circular polarization. The formal limit of sensitivity achieved during the course of this search varied depending upon the particular receivers available. In all cases the search could have detected a narrowband transmitter of power comparable to the Arecibo planetary radar, had any such been transmitting on the frequencies searched during the time of observation out to the distance of the farthest target star. As in previous searches, the number of "false alarms" encountered was far greater than predicted on the basis of Gaussian noise statistics. A small number of stars have exhibited signals which cannot immediately be explained in terms of astrophysical or man-made sources and deserve reobservation. This is typical of the results of previous non-real-time searches and does not yet constitute the detection of an ETI.  相似文献   

8.
The rationale for the use of interstellar artifacts by intelligent life in the universe is described. The advantages of using interstellar probes as a means of exploration and communication are presented and shown to be significant enough to counter the time, energy, and technology arguments generally raised against contact via extraterrestrial artifacts. Four classes of artifacts are defined: Those seeking contact, those seeking to avoid contact, those intended to provide a passive technological threshold for detection, and those for which detection is irrelevant. The Search for Extraterrestrial Artifacts (SETA) is based on the latter two classes. Under the assumption that an extraterrestrial probe will be interested in life in our solar system, a near-Earth search space is defined. This search space is accessible to us now with ground and satellite observing facilities. The current observational status of SETA is reviewed and contrasted with the achievable detection limits for the different parts of the search space.  相似文献   

9.
SETI observational programs conducted over the last two decades, and most of those planned for the near future, have concentrated on searching for signals at microwave frequencies. Considerations of signal-to-noise ratio at the receiving end indicate that this is the correct approach if the broadcasting society is not concerned with directionality and transmits into a fairly large solid angle. However, if that society desires to transmit only a highly directional beacon, then it is not now possible, given our lack of knowledge of advanced space technology, to predict reliably whether microwave or infrared wavelengths are to be preferred in an optimum search program. Given the realities of current terrestrial technology, either the centimeter or millimeter domain is to be preferred to the infrared, independent of considerations of directionality. In any event, there does not appear to be any cosmically unique (“magic”) frequency at which to conduct SETI.  相似文献   

10.
High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.  相似文献   

11.
12.
In August, 1981, the Westerbork Synthesis Radio Telescope was used for 4 h to search for narrowband pulsing radio beacons in the direction of the Galactic Center. By using both the spatial discrimination and temporal stability available to an interferometric measurement, weak intermittent signals can be detected even in the face of the strong, naturally caused radiation from this region. A radio beacon within our bandwidth, centered on the 21 cm neutral hydrogen line, would be recognizable if it had a repetition period between 40 sec and 1/2 h. The rms sensitivity to point sources was approximately 50 mJy/cycle, and the detection limit was 500 mJy/cycle. The limit degrades for pulse widths < 0.02s. No repetitive signals were found. For a swept, narrow-band radio beacon constrained to the Galactic Disk (beamwidth = 0.02 rad), our detection limit corresponds to a transmitter power of 10(11) MW at the Galactic Center.  相似文献   

13.
The nature of a SETI search makes observations uniquely vulnerable to radio frequency interference because the frequency of a possible ETI signal is unknown. Sensitive radio telescopes, sophisticated software and enhanced signal detection equipment are employed to detect faint signals in the 1–3 GHz frequency range. Frequency management at SETI occurs within a policy environment of the ITU spectrum allocation process. Increased demand by commercial satellite services for access to spectrum adjacent to bandwidth allocated to radio astronomy creates severe international and domestic pressures on SETI observations. Strategies for addressing the RFI problem at the international level will be discussed that include a contingency ITU allocation plan for exclusive use of a particular frequency range by SETI in the event a signal is detected. The lunar farside is, by international agreement, a radio quiet zone for use by radio astronomers. Protected from most human-generated emissions, a SETI radio telescope array on the lunar farside would provide reliable data with minimum interference.  相似文献   

14.
Despite the extensive search for glycine (NH?CH?COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH?OH. Another possible reaction involves NH?CH? and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH?CH or NH?CH?OH are the most favorable from the thermochemical point of view.  相似文献   

15.
A scenario is developed under which a discovery of extraterrestrial technology is made by one of the World’s search for exterrestial intelligence (SETI) programs. The nature of the signal received gives an absolute minimum of information as to the nature of the senders. Current SETI detection and reply policy is examined under these assumptions. Current policy calls for prompt and public release of signal information and stellar coordinates upon announcement of a discovery. The SETI protocol calls for no reply until authorized by international consultations. It is argued that changes are needed in these policies to guard against the possibility of unauthorized replies that could severely complicate long-term interstellar communication.  相似文献   

16.
The SERENDIP project is an ongoing program of monitoring and processing broadband radio signals acquired by existing radio astronomy observatories. SERENDIP operates in a piggyback mode: it makes use of whatever observing plan (sequence of frequencies, sky coordinates, and polarizations) is under way at its host observatory. Moreover, the SERENDIP data acquisition system, once installed, operates autonomously. This approach makes it possible to obtain large amounts of high quality observing time in a manner that is economical and that does not adversely affect ongoing radio astronomy survey work. The SERENDIP II system has been installed at the NRAO 300-foot telescope at Green Bank, West Virginia, and has operated there for several thousand hours. In this report, we summarize our findings from these observations and describe the present status of the project. Two key elements of SERENDIP are the automated data acquisition system that uses adaptive thresholds and logs only statistically significant peaks in the real-time power spectra, and the subsequent off-line analysis programs that identify and reject a variety of interference signals. Several specific correlations have been identified that offer promise. At present, the development and testing of these interference rejection algorithms is the main thrust of our work.  相似文献   

17.
《Acta Astronautica》2013,82(2):404-410
Sumbandila (SO-67) is an 81 kg LEO satellite launched on 17 September 2009. Its primary payload is a multi-spectral imager with a ground sampling distance of 6.25 m at an orbit altitude of 500 km. Its two command transceivers operate in the commercial and amateur radio VHF and UHF bands and one of them provides a VHF to UHF repeater service to radio amateurs. This paper presents initial results of a global three week monitoring period of two VHF frequency ranges. The data is obtained by executing on-board flight control procedures to select the frequencies to measure. The existing on-board telemetry gathering system is employed to record the data, most notably the received signal strength for the selected frequency. The data is downloaded using an adaptation of the imagery data download path. We determine regions of high signal levels by distributing individual measurements over cells in the satellite footprint before averaging over the cells. The data is then plotted on a geographical signal strength heatmap. We compare our results with that of a similar study of the late 1990s and point out changes since then. The data provides useful information for selecting future ground station locations for minimum interference. It further gives an indication of frequencies to use for command and telemetry communication at existing ground stations. We propose that including a receiver capable of measuring frequency interference across a desired frequency range is very useful to future missions for selecting communication frequencies from this range for ground station locations.  相似文献   

18.
Using the proposed classification criteria, all known interstellar radio messages are divided into two essentially different groups—scientifically based messages and pseudo-messages. Imitation of interstellar transmissions by most of the exo-civilizations can cause the Great Silence.  相似文献   

19.
Tarter J 《Acta Astronautica》1989,19(11):907-912
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.  相似文献   

20.
《Acta Astronautica》2011,68(11-12):1451-1454
In the past SETI has focused on the reception and deciphering of radio signals from potential remote civilizations. It is conceivable that real-time contact and interaction with a social intelligence may occur in the future. A serious look at the development of relationship, and deciphering of communication signals within and between a non-terrestrial, non-primate sentient species is relevant. Since 1985 a resident community of free-ranging Atlantic spotted dolphins has been observed regularly in the Bahamas. Life history, relationships, regular interspecific interactions with bottlenose dolphins, and multi-modal underwater communication signals have been documented. Dolphins display social communication signals modified for water, their body types, and sensory systems. Like anthropologists, human researchers engage in benign observation in the water and interact with these dolphins to develop rapport and trust. Many individual dolphins have been known for over 20 years. Learning the culturally appropriate etiquette has been important in the relationship with this alien society. To engage humans in interaction the dolphins often initiate spontaneous displays, mimicry, imitation, and synchrony. These elements may be emergent/universal features of one intelligent species contacting another for the intention of initiating interaction. This should be a consideration for real-time contact and interaction for future SETI work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号