首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了进行老化评价研究,选择和研制了三种不同固体含量的(88~91%)端羟基聚丁二烯(HTPB)推进剂。已经证实,88%固体含量的HTPB推进剂符合以前提出的老化模型。这种老化模型已成功地进一步用于较高固体含量的推进剂以及其它计划用的HTPB推进剂的实测力学性能老化数据。采用这种老化模型,根据加速热老化试验数据予测了长期力学性能,予测数据与六年实测老化数据相当一致。利用予测的推进剂破坏性能,结合火箭发动机的要求,来确定予先选定安全裕度的发动机药柱的使用寿命。本文列出了各种复合推进剂老化速率的比较数据。根据老化结果的分析,提出了一个宽范围老化行为的数学表达式。  相似文献   

2.
发动机药柱和推进剂方坯老化性能相关性研究   总被引:1,自引:0,他引:1  
通过长期贮存的CTPB推进剂方坯性能变化和发动机中推进剂药柱性能变化比较,研究了发动机药柱和推进剂方坯老化性能的相关性,发现发动机中不同位置的推进剂性能的变化有明显差异,内层推进剂“变软”的速率比外层慢得多。当外层推进剂强度降低较大时,内层推进剂仍有较高的保持率,几乎和推进剂初始性能相同,并且强度由内向外逐渐变化。因此。单用推进剂方坯的老化性能难于推断发动机药柱的寿命,并对这一现象对发动机寿命的影响进行了讨论。  相似文献   

3.
赵峰  常新龙 《火箭推进》2008,34(1):59-62
通过对常用失效物理模型的分析和总结,结合量子力学理论关于电子产品老化反应速率与环境温、湿度的关系,以推进剂力学性能参数为研究对象,建立了固体推进剂贮存使用寿命的湿热老化模型,并通过试验数据拟合得到具体的经验公式。该模型可作为湿热环境下固体火箭推进剂贮存使用寿命预估的理论依据,也可作为固体火箭发动机剩余寿命计算的参考模型。  相似文献   

4.
固体火箭发动机粘接界面湿热老化与寿命评估   总被引:2,自引:0,他引:2  
通过对固体火箭发动机衬层-推进剂粘接界面的湿热加速老化试验以及不同老化时间下粘接界面的扯离强度测量,分析了不同湿热老化条件下试验件扯离强度随老化时间的变化规律。综合运用Eyring模型与Arrhenius模型,建立了粘接界面湿热老化寿命模型,预测了正常贮存条件下发动机的贮存寿命。研究结果表明,粘接界面平均扯离强度随老化时间呈下降趋势,中间有一个强度趋于稳定的平台期;在温度为20℃,湿度为65%RH条件下,粘接界面的强度半衰期寿命为12.8 a。  相似文献   

5.
针对机载战术导弹发动机的长寿命使用要求,开展了固体推进剂高温加速老化试验和发动机自然贮存解剖试验,并分别测试了固体推进剂在不同环境温度下的力学性能,对比了高温加速老化和发动机自然贮存老化之间的差异。结果表明,该固体推进剂在高温加速老化和长期自然贮存后,最大延伸率均明显下降,发动机自然贮存13 a后,推进剂的延伸率略优于高温加速等效老化13 a的试验结果。此外,发现采用常规拉伸速率下测试固体推进剂老化后的性能存在一定的局限性,建议增加固体推进剂围压力学性能测试,有利于推进剂老化后性能的评判。  相似文献   

6.
一种改进的红外技术—付利叶变换红外光谱,用于分析贮存了101个月的固体推进剂。在离推进剂外表面不同深度的地方截取试样进行分析,结果发现试样中粘合剂没有化学析出,试样的光谱图表明了粘合剂中主要聚合物成份的不同的化学变化,这些变化表征了从同一位置的推进剂上测得的应力和应变的直接相关性。这项工作的目的在于从发动机中取不足半克的推进剂,通过非破坏试验来预估发动机的持续使用寿命。  相似文献   

7.
考虑泊松比的固体发动机装药贮存寿命预估   总被引:2,自引:0,他引:2  
以含单个小孔隙的立方体为代表性体积单元,结合弹性力学公式,推导了固体推进剂空穴率与瞬时泊松比的关系,得到泊松比随推进剂老化的变化规律.通过固体推进剂加速老化试验,得到固体推进剂瞬时模量及最大延伸率随贮存时间的变化规律.以固体推进剂瞬时模量和瞬时泊松比为老化参数,结合三维粘弹性有限元计算方法,计算了某发动机装药结构不同贮...  相似文献   

8.
针对Arrhenius方程将活化能假设与温度无关的常数,给HTPB(端羟基聚丁二烯)推进剂寿命预估引入了误差的问题,提出了基于马尔克夫灰色残差GM(1,1)模型的寿命预估方法。对HTPB推进剂进行了高温加速寿命试验,以最大延伸率作为性能变化表征参数,根据老化反应速率常数随温度的变化关系,建立了马尔克夫灰色残差GM(1,1)模型,对常温条件下推进剂的老化反应速率常数进行了预测,并预估了HTPB推进剂在常温条件下的贮存寿命为11.74 a。  相似文献   

9.
为探索新的特征参量来预估NEPE推进剂的贮存寿命,采用高温加速老化方法,通过老化样品性能测试,检测老化过程中爆热、力学性能、燃速、有效安定剂含量、热爆炸临界温度、交联密度等参量的变化,并利用Bethelot方程评估NEPE推进剂的贮存寿命.结果表明,NEPE推进剂在高温加速老化过程中爆热、燃速、热爆炸临界温度及有效安定...  相似文献   

10.
用NEPE推进剂进行湿热加速老化试验获得了推进剂在不同湿热老化条件下抗拉强度和弹性模量随老化时间的变化规律,建立了推进剂湿热老化失效物理模型,并提出了将弹性模量作为失效判据预估推进剂贮存寿命的方法。分别用抗拉强度和弹性模量作为失效判据,对推进剂贮存寿命进行估算。结果表明:将弹性模量作为失效判据预估NEPE推进剂贮存寿命的方法可行。  相似文献   

11.
固体发动机的贮存试验研究近年来受到广泛关注。本文阐述了固体发动机贮存试验的方法,并对贮存性能分析中的技术难点进行了讨论,内容包括推进剂老化的规律性与发动机装药老化的相关性,加速贮存与自然长期贮存的相关性,小尺寸试验发动机与全尺寸发动机性能的相关性,环境湿度对推进剂性能的影响,定应变对装药贮存性能的影响。  相似文献   

12.
固体火箭发动机预固化技术及其应用   总被引:8,自引:1,他引:7  
依据HTPB复合推进剂界面特性 ,提出改变固化反应温度与时间来调节交联程度 ,使系统的官能团逐步进行化学反应 ,形成化学键和氢键 ,改善了生成物的力学性能。论述了预固化技术和粘接模型。将其应用于固体发动机推进剂 衬层界面粘接、发动机装药成型和推进剂药柱修补技术 ,经地面热试车和飞行考核 ,以及试件的十年储存试验考核 ,性能可靠 ,满足设计要求  相似文献   

13.
方坯药预测寿命与发动机推进剂药柱实际寿命差异研究   总被引:5,自引:1,他引:4  
从固化条件、贮存条件、应力状态条件和预测方法4个方面,分析了方坯药预测寿命与发动机推进剂药柱实际寿命存在差异的原因。针对以上原因提出了用修正因子、受力状态模拟试验和老化动力学研究等方法来减少这种差异的技术途径。以提高推进剂寿命预测的准确性。  相似文献   

14.
要正确预测出固体火箭发动机的贮存寿命,必须要研究材料在实际承载条件下的老化性能.本文通过承载热老化实验,研究了承载对一种典型复合固体推进剂老化性能的影响.所用方法亦可用于实际固体发动机贮存寿命的预估研究,所得结果可供有关人员参考.  相似文献   

15.
从动力学理论分析入手,结合推进剂老化特征参数的研究结果,研究了用非破坏性手段预估固体推进剂残留寿命的方法。动力学理论分析表明,反应活化能是老化温度的函数,活化能对老化温度存在线性依赖关系,且活化能对老化温度的依赖关系和指前因子对老化温度的依赖关系是等效的。研究结果表明,影响推进剂寿命的应力问题也可以转化为动力学问题来处理,且应力对推进剂寿命的影响显著。利用新推导的4参数动力学公式,结合适宜的特征参数,建立了预估推进剂残留寿命的非破坏性方法,该方法可用于到期导弹的延寿。  相似文献   

16.
固体火箭发动机药柱可靠性及寿命预估研究   总被引:3,自引:0,他引:3  
以某型号固体火箭发动机推进剂力学性能随贮存时间变化引起药柱点火工作瞬时结构可靠性降低为衡量指标,预估了发动机寿命。首先研究了发动机自然贮存2、4、12、14、16 a后推进剂的力学性能参数及其分布规律,然后用随机有限元法分析了发动机点火过程中的应力、应变的统计分布,并用应力-强度干涉模型计算了贮存不同时期药柱的点火瞬时可靠性,以此为依据确定了发动机可靠寿命。研究结果表明,该型号发动机以0.97为可靠性下限的寿命约为15 a。  相似文献   

17.
在NASA的长期暴露设施(LDEF)首次试验中,使用了星系发动机的材料和部件。试件经过5年又9个月的空间环境暴露后,和大气环境老化试件相比,质量略有损失,粘接强度稍有降低,推进剂正常硬化,喷管材料性能无变化.空间老化和地面真空老化研究的结果相类似,表明地面真空老化实验可提供发动机空间暴露能力评估的信息。LDEF实验获得的老化结果和星系发动机在196天金星飞行任务和15个月Magellan飞行任务中的结果表明,该发动机具有优越的空间暴露能力.  相似文献   

18.
线性活化能法预估推进剂贮存寿命研究   总被引:7,自引:2,他引:7  
通过理论推导得出了表观活化能与温度的函数关系,将其应用于推进剂贮存寿命预估,得到了新的预估公式,提出了线性活化能法。通过对实际算例进行相关性检验,得出该体系线性活化能计算式的相关系数r=98.74%,置信概率P>85%,同时通过与常温自然贮存推进剂实测性能的比较,确认这种新方法更能准确预估推进剂的长期贮存性能及使用寿命。  相似文献   

19.
为评估持久应变载荷下固体推进剂装药在贮存过程中的结构完整性,采用定应变断裂和热力耦合加速老化相结合的试验方法,获得了宽应变区域内固体推进剂松弛破坏时间模型,联合装药在长期贮存/低温应力加速状态下危险部位的最大持久应变,计算出装药的低温应力加速系数和等效加速试验时间,确定了其在长期贮存和低温应力加速状态的等效关系,在此基础上建立了固体推进剂装药低温应力等效加速试验方法。采用此方法,开展了NEPE推进剂■200 mm圆管发动机装药的低温应力等效加速试验,试验温度为-48℃,试验时间分别为365 d和517 d,试验后装药均保持结构完整。结果表明,仅考虑机械应力情况下装药贮存12 a和17 a后结构完整,已应用于某型号固体推进剂发动机装药寿命评估、定寿和延寿。  相似文献   

20.
固体推进剂力学性能是决定固体推进剂药柱可靠性的关键性能。为准确评估贮存寿命和可靠性,需要掌握固体推进剂力学性能的分布规律以及贮存老化的影响。研究了NEPE推进剂老化过程中抗拉强度、初始模量、最大伸长率和断裂伸长率等力学性能参量的统计分布特性,以及加速老化过程中统计参数的变化规律。研究结果表明:同一老化状态和测试条件下,NEPE推进剂单向拉伸力学性能参量测试值呈正态分布;不同老化状态的力学性能变异系数与老化时间、温度无关,呈正态分布。将不同老化温度、老化时间的力学性能变异系数作为来自同一总体样本的随机变量,求出了NEPE推进剂抗拉强度、最大伸长率、初始模量和脱湿因子的变异系数的99%置信上限,作为固体推进剂药柱贮存可靠性评估的基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号