首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CL-20基复合含能材料的制备及性能   总被引:2,自引:0,他引:2  
为了提高2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异伍兹烷(CL-20)的安全性能,以硝化棉(NC)和聚叠氮缩水甘油醚(GAP)为复合包覆剂,采用水悬浮法对CL-20进行表面包覆。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)和差示扫描量热仪(DSC)对样品的形貌、晶型和热分解性能进行表征,对包覆前后样品的撞击感度和力学性能进行了测试和分析。结果表明,NC和GAP成功包覆在CL-20的表面,所得CL-20/NC/GAP样品颗粒为类球形,中值粒径约为300μm。XRD结果表明,经过细化和包覆后,CL-20晶型没有变化,依然为ε型CL-20。特性落高由包覆前的17.3 cm和29.46 cm升高到了36.74 cm,力学性能也显著提高。DSC结果表明,与未包覆CL-20相比,CL-20/NC/GAP复合粒子的分解峰温、活化能、爆炸临界温度和自加速分解温度都得到了一定程度的提高。  相似文献   

2.
针对CL-20、HMX在GAP-NG-BTTN粘合剂中生成CL-20/HMX共晶的现象,采用HPLC法测定不同温度下ε-CL-20和β-HMX晶体在GAP-NG-BTTN粘合剂中的溶解度,并对溶解度测试试验后的CL-20和XRD进行了晶型和形貌表征;采用原位XRD表征了ε-CL-20和β-HMX及其混合物在高能粘合剂中的晶型变化,提出了CL-20和HMX在硝酸酯粘合剂中的"溶解-共晶"机理。结果表明,ε-CL-20和β-HMX在GAP-NG-BTTN粘合剂中具有一定的溶解度,单一的ε-CL-20或β-HMX纯品在GAP-NG-BTTN粘合剂中达到溶解平衡时CL-20和HMX的晶型和形貌均未发生任何变化;在ε-CL-20/β-HMX/GAP-NG-BTTN体系中,由于CL-20和HMX分子之间存在强烈相互作用,使得CL-20和HMX分子相结合而生成CL-20/HMX共晶,其从溶剂体系中析出,破坏了溶解平衡从而形成"溶解-共晶-析出-溶解"的循环过程。  相似文献   

3.
硼粉的包覆及含包覆硼推进剂燃烧残渣成分分析   总被引:9,自引:0,他引:9  
采用多种包覆剂对硼粉颗粒表面进行包覆,利用透射电镜、酸度计研究各种包覆剂对包覆硼粉的影响,采用化学分析法对含包覆硼推进剂的燃烧残渣成分进行了分析。结果表明,经包覆剂包覆后,在硼粉的表面形成了一层包覆层;包覆后硼粉加水悬浊液体系的pH值明显增大,并适合于含硼富燃料推进剂的制药工艺;包覆后硼粉的燃烧效率明显提高。  相似文献   

4.
激光表面热处理包括退火、相变硬化、合金化、上光、包覆、细晶化、冲击淬火等,目前最实用的是相变硬化工艺。相变硬化工艺在应用上有其独特优点,其工艺控制技术包括聚焦方式、光束形状控制、重叠系数及温度控制问题,已有应用实例。  相似文献   

5.
AlH_3由于其极高氢含量和潜在的应用价值而得到了国内外广泛的关注,然而,现有的α-AlH_3制备工艺复杂、成本高及长期稳定性能差等问题,而限制了其广泛研究与应用。采用固态真空转晶法制备晶型单一、高品质的α-AlH_3。而后采用小分子化合物对α-AlH_3进行包覆实验,并通过X射线衍射、电子顺磁共振仪、热失重差热分析、扫描电子显微镜和透射电子显微镜证实包覆成功。对包覆前后的α-AlH_3在室温和90%湿度条件下进行稳定性对比实验,结果表明,未包覆的α-AlH_3在10 d后即分解,而包覆后的α-AlH_3在16 d后仍保持很好的稳定性。该技术摒弃高毒甲苯溶液转晶行为,兼具成本低和连续化工业生产的优点,为α-AlH_3的规模化生产和长期贮存提供了新的思路。  相似文献   

6.
采用原位自组装法和溶剂-反溶剂法两种不同的工艺,选用不同C/O质量比的氧化石墨烯(GO),对α-AlH_3进行了包覆。包覆样品的X射线衍射和傅里叶红外光谱结构表征表明,包覆前后α-AlH_3的晶型保持不变。采用机械撞击感度测试和扫描电镜,研究了包覆工艺对样品降感效果的影响关系。通过比较发现,溶剂-反溶剂法工艺制备的样品机械撞击感度要比原位自组装法的低。在所选GO中,以GO-3为包覆剂,采用溶剂-反溶剂法工艺制备得到的含AlH_3推进剂药浆的机械撞击感度最低,药浆50%爆炸的临界撞击能由7.3 J提高到11.7 J。  相似文献   

7.
减少含硼推进剂残渣中氮化硼含量的研究   总被引:3,自引:1,他引:3  
针对含硼推进剂燃烧残渣中存在较多氮化硼(BN)问题,采用氧弹法进行硼点火的模拟实验,并用热分析、X射线转靶衍射和元素分析等方法研究了BN的来源及其生成量与空气压强、包覆剂的关系。结果发现BN中氮元素主要来源于空气中氮气,其生成量随空气压强的上升而增加,并与包覆剂的含氧量有关。提出了抑制BN生成的有效途径。  相似文献   

8.
高能量密度的六硝基六氮杂异伍兹烷(CL-20)、氧平衡优异的高氯酸铵(AP)和二硝酰胺铵(ADN)等,用作氧化剂可提高固体推进剂能量、氧平衡等性能,具有良好的应用潜力。由于CL-20存在机械感度高和低氧平衡等问题,AP和ADN存在易吸湿和低能量等缺点,针对CL-20、AP、ADN等氧化剂进行共晶改性成为提升固体推进剂能量、安全等性能的重要途径。根据固体推进剂对氧化剂的性能要求,分析了各种氧化剂应用在推进剂配方中存在的性能优势和不足。综述了近年来CL-20、ADN等氧化剂在机械感度、吸湿性、氧平衡等方面的共晶改性情况,总结了当前已报道的共晶氧化剂相比原材料出现的性能优缺点和在制备与应用过程中存在的问题,展望了未来固体推进剂用氧化剂共晶改性的发展方向与应用前景。  相似文献   

9.
以环三亚甲基三硝胺(RDX)为主体炸药,聚甲基丙烯酸甲酯(PMMA)为粘接剂,采用超声辅助一步造粒技术,制备了RDX/PMMA微球。利用分子动力学(MD)模拟,对PMMA可作为RDX包覆材料的可行性进行了分析,并用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换近红外(FT-IR)和差示扫描量热仪(DSC)对粒子进行性能表征,通过撞击感度对微球的安全性能进行测试。通过模拟,结合能ERDXPMMA(610.69 k J/mol)ERDXF2602(499.93 k J/mol),即PMMA与RDX分子间作用力较强,相容性更好,可作为包覆RDX的粘接剂,与实验结果一致;XRD和FT-IR分析显示RDX/PMMA晶型结构没有发生转变;由DSC分析,与原料RDX相比,RDX/PMMA微球的热爆炸临界温度由220.95℃增加到227.53℃,热稳定性有所改善;RDX/PMMA微球特性落高从22.4 cm上升到了38.6 cm,安全性能明显提高;该方法将普通包覆的工作时间缩短了2.5倍,工作效率明显改善。  相似文献   

10.
郑伟  谢波  胡铨  曹磊  王江宁  张军 《固体火箭技术》2016,(4):509-512,537
采用扫描电镜研究了影响含DNTF改性双基推进剂晶析的因素,并对抑制晶析的方法进行了探索。结果表明,随配方中DNTF含量增加,推进剂表面的晶析量先增加、后减少。随配方中溶棉比的降低,推进剂表面的晶析量减少。以NG和以三乙二醇二硝酸酯(TEGDN)为溶剂时,推进剂均会出现明显的晶析现象。采用3%NC的丙酮溶液涂覆,可明显减少晶析量;在推进剂配方中,加入少量聚合物BA可完全抑制晶析。  相似文献   

11.
以LiAlH_4和AICI_3为原料,通过乙醚法制备了AlH_3,采用扫描电子显微镜(SEM)和X射线粉末颜射(XRD),研究了制备条件对产物形貌、晶型的影响规律。结果表明,氢化铝醚合物高温脱醚时,混合溶剂中乙醚比例是影响AlH_3晶型及形貌的主要因素,当结晶时,体系中乙醚不能及时除去,会导致α'-AlH_3的形成,且AlH_3形貌逐渐由立方体变成绒球状。伴生的α'型对AlH_3室温存储稳定性及安全性有较大影响,α'型存在加快AlH_3在室温下分解,且使得样品摩擦感度升高。  相似文献   

12.
罗晓平  黄海 《航天控制》2005,23(2):47-53
为了跟踪自适应结构控制技术的研究进展及其在空间结构中的应用情况,对自适应结构控制技术的研究现状进行了综述,分析了各种控制方法的特点,并介绍了自适应结构控制技术在航天领域的应用,在此基础上,提出今后工程应用应加强研究的问题。  相似文献   

13.
概括介绍了近年来空间飞行器的动力学与控制研究的发展状况,综述了单星动力学建模和控制技术、多星动力学建模和控制技术,以及太阳帆航天器、绳系卫星等新型航天器动力学与控制技术等相关航天领域中的若干基础问题,总结了在这些领域中的研究方法及取得的成果。提出了相关领域中值得深入研究的问题及后续发展方向,如深空探测的轨道动力学、超大尺度柔性航天器的动力学建模与协同控制技术、敏捷卫星的机动控制技术、多星姿轨耦合动力学和控制技术、太阳帆航天器动力学与控制技术,以及空间绳系卫星系统的动力学与控制技术等重点和主要发展方向。  相似文献   

14.
介绍了流体二次喷射推力矢量原理,对该领域主要的涡流阀、激波诱导和喉部喷射三种技术的研究进展进行了归纳分析。其中,涡流阀和激波诱导技术均进行了原理性点火试车,获得了较好的控制效果,奠定了工程应用基础;喉部喷射技术也完成了冷流试验,获得了推力控制调节的特性和基本规律,具有较高的研究价值。然而,各种流体二次喷射推力矢量控制技术离工程实际应用还存在一定差距。最后,对固体火箭发动机的流体二次喷射推力矢量控制技术研究需重点关注的问题提出了建议,以期为后续研究工作提供一定的借鉴和参考。  相似文献   

15.
为改善RDX的安全性能,用一种HP-1高分子材料作为包覆剂,采用喷雾干燥技术制备了RDX/HP-1超细包覆球形粒子,RDX与HP-1质量比为98∶2。利用SEM和XRD对RDX原料及RDX/HP-1进行了表征。同时,对两者的热分解性能与撞击感度进行了对比。结果表明,改性后的RDX/HP-1颗粒为规则的球形,粒度约0.3~3μm,形貌及粒度明显优于RDX原料,晶型与原料相同。RDX/HP-1的活化能与热爆炸临界温度分别为191.9 k J/mol和237.2℃,RDX原料的活化能与热爆炸临界温度分别为174.0 k J/mol和236.0℃,RDX/HP-1与RDX原料的等动力学点温度为235.1℃。RDX/HP-1的真空安定性优于RDX原料。RDX/HP-1与RDX原料的特性落高分别为61.5、20.6 cm。  相似文献   

16.
热塑性聚氨酯弹性体包覆CL-20及对NEPE推进剂性能影响   总被引:5,自引:1,他引:4  
采用热塑性聚氨酯弹性体,通过水-溶液悬浮法将其包覆于六硝基六氮杂异伍兹烷(CL-20),并对包覆后的CL-20分别进行了XPS、SEM、撞击感度和表面能测试;研究了弹性体包覆CL-20对含CL-20的NEPE推进剂常温力学性能、燃烧性能的影响.研究表明,热塑性弹性体能有效包覆CL-20,在大幅度提高含CL-20的NEPE推进剂常温力学性能并改善"脱湿"的同时,改善高能低特征信号配方燃烧性能,σm最大提高了47%,εm最大提高了184%;燃速压强指数n降低了12%.  相似文献   

17.
运载火箭动力系统故障下制导控制技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
李爽  刘旭  叶松  林子瑞 《上海航天》2022,39(4):76-93
动力系统故障是导致运载火箭发射任务失败的最常见原因,从动力系统故障建模、自主制导和容错控制方面,系统地阐述了动力系统故障下运载火箭制导控制技术的研究进展,为发展新型制导控制算法提供了思路。建立了推力下降故障和执行机构故障的数学建模,并对比了国内外先进运载火箭的制导控制性能;总结了动力系统故障下自主制导所涉及的轨迹优化和制导算法;在被动、主动容错控制框架内,回顾了典型的故障诊断、控制重构、容错控制和震动抑制方法;同时,概述了人工智能技术在自主制导和容错控制方面的应用;结合“会学习”的运载火箭概念,讨论了人工智能技术在促进运载火箭自主化和智能化方面的发展趋势,对未来智慧火箭的制导控制技术进行了展望。  相似文献   

18.
三氢化铝(AlH_3)作为一种潜在的储氢量高和能量密度大的储氢介质,可广泛用于固体或混合火箭推进器,炸药和低温燃料电池等领域。介绍了AlH_3用于固体推进剂高能燃料的应用价值,指出了目前阻碍其在固体推进剂中广泛使用的因素。为了研究AlH_3的热分解释氢特性和机理,综述了热分解释氢的热力学和动力学特性、微观释氢机理、释氢影响因素(氧化层、粒径、晶型、加热速率、热解气氛、球磨和掺杂等)以及各种稳定化改性方法(表面钝化法、表面包覆法等)等方面的研究进展;重点介绍了不同晶型的热分解释氢特性和其释氢影响因素,并指出了AlH_3作为高能储氢材料亟需解决的问题和研究方向:深入研究释氢及氧化机理,提出更加高效的改性调控方法;寻找实现AlH_3循环利用的有效途径。  相似文献   

19.
1总体与系统技术1.1航天器动力学模型技术1.2航天器控制系统方案设计1.3系统集成与一体化设计技术2制导、导航和控制技术2.1先进的信息与控制理论及应用2.2全程复合制导技术(星光、卫星导航系统)2.3精确末制导技术2.4航天器自主导航和组合导航技术2.5新型运载火箭控制系统研究2.6系统精度与毁伤效果的评估和分析2.7卫星姿态轨道控制技术研究2.8航天器交会对接、返回与救生技术2.9深空探测与着陆技术2.10卫星编队飞行与星座控制技术2.11拦截器制导与控制技术2.12机器人动力学与控制2.13控制系统“标准化、通用化、组合化”技术2.14航天器测控…  相似文献   

20.
1总体与系统技术1.1航天器动力学模型技术1.2航天器控制系统方案设计1.3系统集成与一体化设计技术2制导、导航和控制技术2.1先进的信息与控制理论及应用2.2全程复合制导技术(星光、卫星导航系统)2.3精确末制导技术2.4航天器自主导航和组合导航技术2.5新型运载火箭控制系统研究2.6系统精度与毁伤效果的评估和分析2.7卫星姿态轨道控制技术研究2.8航天器交会对接、返回与救生技术2.9深空探测与着陆技术2.10卫星编队飞行与星座控制技术2.11拦截器制导与控制技术2.12机器人动力学与控制2.13控制系统“标准化、通用化、组合化”技术2.14航天器测控…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号