首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
固体推进剂药柱强度可靠性蒙特卡罗法数字仿真   总被引:2,自引:0,他引:2  
使用了一种计算随机载荷下固体推进剂药柱强度可靠性的蒙特卡罗模拟方法,即通过建立固体推进剂药柱的累积损伤模型,采用直接模拟法模拟随机载荷和固体推进剂药柱初始强度来获取推进剂药柱的可靠度。该方法能有效地预测运输、飞行等环境下固体推进剂药柱的强度可靠性。最后,结合实例进行了可靠性数字仿真。  相似文献   

2.
固体发动机低温点火条件下药柱结构完整性分析   总被引:2,自引:0,他引:2  
分别采用三维弹性和三维线粘弹性模型,对固体发动机药柱在低温和点火升压2种载荷下的结构完整性进行了计算分析。研究了推进剂弹性模量E、泊松比μ、药柱m数等参数对结构完整性的影响。结果表明,在发动机低温点火条件下,药柱内孔表面是最危险部位;固化降温和点火升压2种载荷引起的最大等效应变在此是相互叠加的;药柱m数对固化降温和点火升压载荷下的应变分布有重要影响。  相似文献   

3.
从推进剂及粘接界面力学性能、推进剂及粘接界面失效、发动机药柱及推进剂数值仿真方法、发动机药柱结构试验技术四方面,对药柱结构完整性发展现状进行了全方位多角度的评述,分析了目前固体发动机药柱结构完整性研究所面临的挑战,指出未来应重点发展推进剂和粘接界面力学特性及失效的多尺度表征和测试方法、先进数值仿真方法和发动机药柱结构试验技术,以及开发药柱结构完整性评估一体化平台。  相似文献   

4.
某固体火箭发动机药柱的动力学分析   总被引:2,自引:0,他引:2  
对某固体火箭发动机药柱进行了动力学分析。针对发动机药柱结构,利用MSC.NASTRAN有限元软件,建立了药柱结构的三维有限元计算模型,其中推进剂和包覆层采用粘弹性材料的频变复模量模型。进行了复特征值分析、频率响应分析和公路运输的随机振动分析,得到了固体火箭发动机药柱的固有频率、相应的振型、各阶模态损耗因子和频率响应曲线,以及随机振动响应均方根值和功率谱密度曲线,为进一步分析发动机在动力学载荷作用下的结构完整性奠定了基础。  相似文献   

5.
研究了丁羟推进剂在定载荷下断裂所需时间与推进剂本身抗拉强度的关系,并且给出了环境温度和湿度,试件大小,形状和制作方法对推进剂断裂所需时间的影响,为固体火箭发动机药柱设计提供了参考数据。  相似文献   

6.
基于热传导方程,时装有变截面星孔药柱的火箭发动机物理模型进行了合理简化,并根据推进剂材料的粘弹性本构关系,结合热流变简单材料的特性,对其受温度冲击栽荷的情况进行了数值计算,得到温度冲击载荷作用下药柱的实时温度场及应力.应变特性,分析了星尖处的应力随时间的变化及在药柱长度方向上的变化规律,得到药柱肉厚及温度冲击都会对应力...  相似文献   

7.
为了分析固体发动机药柱在长期自重载荷作用下的位移水平,采用加速老化试验,得到该推进剂松弛模量随贮存时间的变化规律;考虑固体导弹发动机的实际贮存情况,探讨了有限元计算中处理发动机滚转的方法;应用三维粘弹性有限元分析方法,对贮存一定时间后的发动机进行了数值仿真,从中获得发动机药柱在长期自重载荷作用下的位移情况。计算结果表明,固体发动机每0.5 a定期翻转,蠕变基本回复到原来的3%以内,药柱的位移增加不大,说明贮存过程中每0.5 a翻转1次是一种好方法,可为固体发动机的设计和使用提供参考。  相似文献   

8.
利用粘弹性随机有限元法考虑固体推进剂药柱材料的随机性,结构几何形状的随机性以及随机载荷等,研究了复合因素下结构的随机应力场,讨论了不同的相关函数假设对粘弹性随机结构分析的影响。结果表明,同时考虑多种随机因素更多符合实际情况,药柱的随机应力、应变场对相关函数具有不敏感的特性。  相似文献   

9.
评价固体推进剂药柱的可靠性,主要是依据对其力学性能的评估。用全尺寸药柱进行试验,通常是很困难的,并且费用昂贵。本文介绍了一种能反映全尺寸发动机的特型小尺寸、低成本模拟发动机的研究和试验。这种发动机可模拟全尺寸发动机药柱(88%固体含量的CTPB推进剂)的条件进行力学性能试验。进行了大量的、承受多种载荷条件(温度循环和/或加压)的模拟发动机试验。给出了试验结果,并首次给出了与尚在发展中的理论计算有关的分析。  相似文献   

10.
张建伟  孙冰 《宇航学报》2006,27(5):871-875
非线性分析是药柱结构分析中的难点,针对其对结构分析的影响,基于不可压缩材料的粘弹性本构关系,应用完全拉格朗日(T.L)法的虚功方程,综合考虑药柱的近似不可压缩性和几何非线性,推导了三维粘弹性几何非线性有限元增量方程,编写了有限元程序对星型药柱在受压力载荷以及固化降温载荷作用下的结构进行了分析,并与线性计算的结果进行了对比,结果表明,在大载荷作用下,非线性对药柱结构分析的影响比较显著,计算时考虑非线性的影响是必要的。  相似文献   

11.
固体火箭发动机药柱表面裂纹分析   总被引:3,自引:0,他引:3  
为了分析含表面裂纹的固体火箭发动机药柱在温度、燃气内压与轴向过载联合作用下的扩展情况,在固体火箭发动机的危险截面上沿危险方向预设表面裂纹。采用有限元方法,在裂纹尖端构建三维奇异裂纹元,模拟裂纹扩展,分别计算随着裂纹扩展所对应裂纹深度的应力强度因子,得到了应力强度因子随裂纹深度的变化规律。根据应力强度因子的变化规律,探讨了发动机药柱裂纹扩展的趋势。  相似文献   

12.
基于参数化建模的药柱伞盘结构形状优化   总被引:1,自引:0,他引:1  
锥柱形固体火箭发动机药柱的伞盘结构在低温载荷作用下易产生裂纹,是药柱设计关注的重点部位.为了对伞盘结构进行形状优化,采用有限元软件MSC.Patran的二次开发工具PCL( Patran Command Language),编制参数化建模程序,根据输入参数自动建模计算,并输出计算结果.将整数编码遗传算法与参数化建模方法...  相似文献   

13.
固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析   总被引:16,自引:4,他引:12  
为了判断固体发动机药柱包覆层与推进剂界面脱粘裂纹在燃气内压和轴向过栽联合作用下的稳定性,以翼锥药型并含前后伞盘的固体发动机为例,应用有限元方法,建立界面脱粘的三维有限元计算模型,在界面脱粘裂纹尖端设置三维奇异裂纹元,模拟裂纹扩展。通过在包覆层与推进剂界面上设置不同深度的脱粘,分别计算不同深度时脱粘裂纹的应力强度因子,得到裂纹应力强度因子随脱粘深度的变化规律,由此判断裂纹的稳定性。  相似文献   

14.
固体火箭发动机轴向冲击响应有限元分析   总被引:1,自引:1,他引:1  
对固体火箭发动机固有频率和模态进行了分析,用大质量法将轴向加速度冲击载荷转化为轴向力载荷对模型进行加载,计算了固体火箭发动机的轴向冲击响应,并与试验结果进行了对比分析。计算结果与试验吻合,说明大质量法加载可行。发动机壳体应力较其他部位大,但远未达到强度极限,药柱应变比其他部位大,但数值很小。  相似文献   

15.
翼柱形药柱模拟发动机的翼槽结构对点火瞬态过程的火焰传播规律存在着潜在的影响.通过试验分析不同质量流量的点火剂燃气以不同的角度喷射到翼柱形药柱模拟发动机的推进剂表面时的火焰传播规律,发现火焰峰传播到翼槽区域后,尾部翼槽底部区域被最后点燃.通过对试验进行数值仿真分析可知,压缩在翼槽底部温度较低的气体减弱了高温燃气与推进剂的...  相似文献   

16.
固体火箭发动机药柱主动段飞行时应力应变分析   总被引:2,自引:0,他引:2  
为了探讨固体火箭发动机药柱主动段飞行时的形变、应力和应变变化规律,以星形药型发动机为例,采用三维粘弹性有限元法,根据推进剂药柱的燃烧规律,通过计算发动机药柱在整个工作过程中不同烧蚀情况下各构成部分的结构响应,得到了主动段飞行时发动机药柱在不同环境温度、燃气内压与轴向过载联合作用下位移、应力和应变场随时间的变化规律。结果表明,低温点火发射时,内压增压至峰值时为发动机最危险时刻。  相似文献   

17.
考虑壳体与空气自然对流换热的影响,对固体发动机结构进行了热力耦合有限元分析。研究了对流换热对发动机结构响应的影响,讨论了不同对流换热系数下的温度及应变响应变化规律,评估了某双伞盘固体发动机经历固化降温、低温试验及低温贮存过程的结构完整性。结果表明,考虑对流换热能更准确地反映发动机的受载状态;对流换热系数变化影响其结构响应历程,但随对流换热系数的不断增大,这种影响逐渐减弱。  相似文献   

18.
冲击作用下推进剂变形的流固耦合分析方法   总被引:1,自引:0,他引:1  
固体火箭发动机的点火过程是一个复杂多变的理化过程,具有时间短、升温、升压梯度大等特点。针对固体火箭发动机点火过程中的装药结构完整性问题,文中建立了一套用于分析冲击作用下固体推进剂变形现象的仿真模型。采用RANS和ALE方法,分别对流体域和固体域进行求解,以两场独立交叉耦合迭代的模式实现了仿真过程。以一个推进剂冷流冲击实验作为算例,对仿真模型进行了验证,计算值与测量值间误差不超过10%,仿真模型计算可靠,具有向固体火箭发动机实际点火过程拓展的价值。  相似文献   

19.
为了高效而通用地对各种具有复杂结构的药柱进行燃面计算,文中基于图形处理器(GPU)高度并行化的计算构架,提出了一种三维离散化体素点阵表达的燃面计算方法.首先,将药柱所在的包围盒空间均匀地离散戍三维空间体素点阵,通过对边界表达的任意药柱模型进行Z-Buffer测试确定计算边界;其次,采用并行的燃烧状态填充算法确定所有的体...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号