首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于广义回归神经网络(GRNN),提出了一种获取粘接界面的内聚强度和断裂韧性的数值方法。在ABAQUS中建立了双悬臂夹层梁(DCSB)的三维有限元模型(FEM),引入双线性内聚力模型描述界面单元的本构关系,采用不同的内聚参数计算加载点的载荷-位移关系。将有限元计算结果整理后作为广义回归神经网络的训练样本,将实验结果作为输入,预测了粘接界面的力学性能参数。结果表明,采用GRNN和Hooke-Jeeves算法获取粘接界面的力学性能参数分别需要进行25轮次和62轮次有限元分析,与GRNN和修正梁模型对应的加载点载荷-位移曲线和实验曲线之间的最大相对误差分别为1.12%和6.67%,基于GRNN的反演方法能够快速、准确地获取粘三元乙丙橡胶薄膜接界面的力学性能参数。  相似文献   

2.
丁羟推进剂粘接体系中的组分迁移   总被引:3,自引:1,他引:3  
用浸泡增重法研究了衬层、绝热层对DOS和T27的吸收能力,用气相色谱仪研究了HTPB推进剂/HTPB衬层/EPDM绝热层粘接体系中DOS、T27和GFP的迁移。结果表明,HTPB衬层和EPDM绝热层对DOS和T27的吸收能力很强;粘合剂的极性增大或交联密度升高,衬层对DOS、T27的吸收能力下降,但粘合剂的极性增大,对衬层与HTPB推进剂的界面粘接性能不利;在HTPB推进剂/HTPB衬层/EPDM绝热层粘接体系中,DOS、T27或GFP的迁移平衡浓度为粘合剂相的平衡浓度。  相似文献   

3.
为有效降低三元乙丙(EPDM)绝热材料中小分子挥发物含量,研究了液体EPDM(LEPDM)、液体低分子聚丁二烯(LPB)、液体低分子聚异戊二烯(LIR)、液体丁腈橡胶(LNBR)和液体端羟基聚丁二烯(LHTPB)等高分子增塑剂对EPDM绝热层门尼粘度、力学性能、烧蚀性能、老化性能、可挥发分含量和界面粘接性能的影响规律,并与传统橡胶增塑剂液体石蜡进行对比。结果表明,相比传统增塑剂LPO,高分子增塑剂制备EPDM绝热材料挥发分含量显著降低,其中LIR、LEPDM和HTPB三种高分子增塑剂制备绝热材料挥发分含量最低;同时,其玻璃化转变温度升高,断裂伸长率降低,线烧蚀率降低,门尼粘度和抗拉强度基本相当;除LEPDM外其他高分子增塑剂制备绝热材料的EPDM_生/EPDM_熟界面粘接强度明显下降; EPDM/铝和EPDM_生/EPDM_生界面粘接强度及70℃热老化性能基本相当。  相似文献   

4.
为了准确描述和预测固体发动机界面的粘接性能,为固体发动机结构完整性分析提供有效参考,通过商业有限元软件ABAQUS用户子程序(UEL)对基于势函数的PPR内聚力单元进行了二次开发,设计了固体发动机推进剂/绝热层界面Ⅰ型脱粘试验方案,并基于试验的反演分析获得PPR内聚力模型对应的特征参数,对不同加载速率下粘接界面的断裂与损伤特性进行了相关研究。研究表明,PPR内聚力模型能够较好地描述界面脱粘过程,且粘接界面的力学行为具有显著的率相关性,随着加载速率的增大,粘接界面的内聚能和内聚强度均增大,法向初始刚度和损伤起始位移均减小。此外,I型界面脱粘试验过程中加载力随位移的变化可分为强化阶段和损伤演化阶段,粘接界面的速率相关性主要体现在损伤演化阶段。  相似文献   

5.
使用SEM、AFM、比表面积与孔体积测试分析仪(BET)和XPS对国产腰形截面炭纤维、圆形截面高强炭纤维和国外圆形截面T300炭纤维表面特性进行物理与化学表征与分析,并对炭纤维/环氧复合材料界面粘接性能进行了研究。表面形貌分析表明,腰形截面炭纤维比表面积大于圆形截面炭纤维,但其表面沟槽较圆形截面炭纤维浅。XPS分析表明,腰形截面炭纤维的表面活性略高于国产圆形截面炭纤维,但明显低于T300;界面剪切强度与层间剪切强度测试结果表明,腰形截面炭纤维/环氧复合材料的界面剪切强度和层间剪切强度均接近于T300/环氧复合材料,高于国产圆形截面炭纤维/环氧复合材料。  相似文献   

6.
为解决三元乙丙(EPDM)绝热层机械打磨效率低、噪音大、粉尘多,以及溶剂清洗带来的安全、操作人员的健康等问题,探究大气等离子体处理技术取代机械打磨的可行性。运用大气等离子体对EPDM绝热层进行表面处理,通过傅里叶红外光谱、扫描电子显微镜-能量色散谱仪、表面能测量仪对处理前后EPDM绝热层表面形貌、化学元素组成和表面润湿性进行表征,采用万能材料试验机对处理前后EPDM绝热层和衬层的界面粘接性能进行测试。实验结果表明,等离子体处理后的EPDM绝热层表面新增含氧基团,表面氧元素含量增加,表面形貌更加均匀,表面能由25.43 mN/m升高到43.06 mN/m, EPDM绝热层/衬层的界面粘接强度由1.89 MPa提高到2.16 MPa,证明了大气等离子体处理技术取代机械打磨具有可行性。  相似文献   

7.
将Zn(MAA)2和Mg(MAA)2分别添加到EPDM/NBR橡胶中,制成强粘接型柔性绝热层材料,分别研究了其各自用量对绝热层材料与45#钢之间粘合性能的影响.结果显示,即使不使用任何表面粘合剂,向EPDM/NBR橡胶中添加少量Zn(MAA)2或Mg(MAA)2后,均能显著提高绝热层与45#钢之间的粘接强度;但随着Zn(MAA)2用量增加,绝热层材料与金属的扯离强度先增加后急剧降低,当Zn(MAA)2用量为2 phr时,粘接强度达最佳值,扯离试样的破坏方式主要为界面破坏;而随着Mg(MAA)2用量增加,绝热层与45#钢之间的粘接强度不断增大,且均大于添加相同量Zn(MAA)2时的强度,粘接试样的破坏形式均为橡胶本体破坏,当Mg(MAA)2用量为2~7 phr时,粘接强度均高于4.58 MPa.  相似文献   

8.
热固性聚三唑树脂(PTA)具有突出的力学、热学性能,分子可设计性强,工艺性好,可与多种增强纤维复合制成高性能复合材料。通过浇注体研究了一种热固性PTA树脂的力学、热学性能,固化体系玻璃化温度接近200℃。采用扫描电镜(SEM)、单向板、NOL环等方法,对T-700炭纤维/PTA树脂复合材料性能及粘接界面进行了系统研究。结果表明,复合材料的拉伸、压缩性能与T-700炭纤维/E-51环氧树脂复合材料相当,剪切性能低20%~40%。通过SEM对复合材料粘接界面分析,破坏断面"拔出"纤维表面光滑,挂胶较少,界面粘接相对薄弱是影响复合材料性能的主要因素。  相似文献   

9.
以三元乙丙橡胶(EPDM)为基体,中空聚酰亚胺纤维为耐热型纤维,分别从低密度高成炭、高耐热以及分子链催化成炭三方面出发,通过机械共混法制备了酚醛空心微球(HPM)、聚酰亚胺树脂(PIR)以及含不饱和双键环磷腈衍生物(CPD)复合的EPDM绝热层,并对这三种绝热层进行了硫化性能、力学性能、与金属界面粘接性能以及耐烧蚀性能...  相似文献   

10.
湿热老化对高性能复合材料性能的影响   总被引:12,自引:0,他引:12  
通过湿热老化试验(温度为85℃,湿度为95%),研究了T700纤维/环氧和F-12纤维/环氧两种复合材料力学性能、玻璃化转变温度、热失重随老化时间的变化。结果表明,经湿热老化后,两种复合材料的拉伸强度、拉伸模量和剪切强度具有不同的变化规律,复合材料的玻璃化转变温度有较明显地下降。两种复合材料湿热老化机理有明显的区别,T700纤维/环氧复合材料老化后的性能稳定性优于F-12纤维/环氧复合材料。  相似文献   

11.
采用全域CZM模型模拟了复合固体推进剂从细观脱湿到基体开裂,直至微裂纹扩展汇合,最后断裂破坏的演化过程,探索了其宏观力学行为发生发展的内在原因。数值模拟结果在微裂纹的开裂特征以及推进剂的宏观应力-应变曲线等方面与试验结果吻合较好。研究结果表明,采用全域CZM模型能有效模拟复合推进剂材料细观断裂破坏过程及其宏观力学性能;通过参数反演可知混合基体的初始刚度远小于颗粒/基体界面的,而粘接强度和粘接能大于界面的,这使得基体易变形而界面先脱湿;可将推进剂受拉伸载荷的细观力学行为分为四个阶段:无损伤变形阶段、界面部分脱湿阶段、脱湿与基体开裂并存阶段、微裂纹聚合断裂阶段。  相似文献   

12.
为研究某立贮式固体火箭发动机在海洋值班条件下推进剂/衬层粘接界面的损伤情况,对固体火箭发动机在实际振动载荷与重力耦合作用下的疲劳损伤进行了评估。对监测的发动机振动数据进行了预处理;利用有限元软件先后模拟了发动机固化降温过程和值班振动过程;运用三点雨流循环计数和Miner理论对粘接界面危险点处累积损伤值进行了计算。结果表明,固化降温过程中,药柱两端与人工脱粘层脱开,推进剂/衬层粘接界面剪应力变化过程可由幂函数τ=a·t~b+c表示;以固化降温结果作为原始条件,振动初始时刻粘接界面剪应力发生剧烈变化,约15 s后剪应力稳定变化,最大值点位于界面头部;在某特定海情下连续值班一年时,重力和振动载荷造成的某固体发动机寿命损伤为14.84%。  相似文献   

13.
顾乃建  武文华  郭杏林 《宇航学报》2022,43(12):1618-1628
针对于星-箭连接动态界面力无法通过力传感器直接测量,且典型时域动载反演方法难以准确计算界面力的时域变化等难点,提出了基于长短时记忆(LSTM)神经网络的星-箭界面力深度学习反演方法。首先通过卫星地面测试试验得到数据依据,以卫星主体结构的加速度测量数据为输入层,以星-箭界面力测量数据为输出层,利用LSTM神经网络建立输入和输出间的反演映射关系模型,实现卫星在发射过程中较高精度的界面力反演。进而,设计并开展了某典型卫星结构的正弦扫频和随机振动实验,测试LSTM界面力反演方法的可行性。结果分析可知,所提出的基于LSTM深度学习反演方法能够精确地获得动态界面力时程数据,两项性能指标均优于目前典型的载荷反演方法。  相似文献   

14.
再入机动飞行器自适应轨迹线性化控制   总被引:1,自引:0,他引:1  
针对一类多输入多输出模型不确定系统,提出了一种基于广义模糊神经网络的自适应轨迹线性化控制方法(ATLC).针对再入机动飞行器(MRV)进行了控制器设计和分析.MRV气动参数存在较大的不确定,这会导致轨迹线性化控制器(TLC)鲁棒性能下降.利用广义模糊神经网络(G-FNN)在线补偿系统的非线性建模不确定,改善了控制器性能.基于Lyapunov稳定性理论,证明了ATLC闭环控制系统的稳定性.仿真结果表明自适应轨迹线性化控制系统在飞行器气动参数大范围摄动时仍具有鲁棒性和稳定性,验证了所提出的控制策略的有效性.  相似文献   

15.
NEPE推进剂粘接体系中的组分迁移及影响   总被引:3,自引:0,他引:3  
采用高效液相色谱(HPLC)和等离子发射光谱(ICP),并结合粘接强度的变化,研究了NEPE推进剂粘接体系中组分的迁移及对粘接性能的影响.结果表明,NEPE推进剂中的硝酸酯和稳定剂向HTPB/TDI衬层中的迁移量,随氨基甲酸酯硬段含量的升高而增大;硝酸酯的迁移对衬层的粘接贮存性能无明显不利影响,但显著降低了HTPB/TDI衬层的力学贮存性能;NEPE推进剂中TPB的单向迁移降低了衬层/推进剂界面的粘接性能,稳定剂的单向迁移显著降低了界面的粘接贮存性能.  相似文献   

16.
借助Drago R S方程,采用反相气相色谱法(IGC)表征了丁羟四组元(AP/RDX/Al/HTPB)推进剂主要组分的表面酸碱性参数,计算出了主要组分间的界面酸碱作用焓ΔH_(AB).结果表明,BA键合剂与AP、RDX的界面作用焓显著大于HTPB聚氨酯基体与AP、RDX的界面作用焓,也显著大于BA键合剂与HTPB聚氨酯基体的作用焓,据此可预估BA键合剂可优先吸附在固体填料表面.因此,BA键合剂能大大提高推进剂基体/填料的界面粘接强度.  相似文献   

17.
研究了(200±10)、(90±10)、(50±10)、(30±10) nm四种纳米氧化锌和普通氧化锌对三元乙丙(EPDM)绝热层硫化后胶片中残留硬脂酸含量的影响。结果表明,随着纳米氧化锌比表面积增大,绝热层硫化后胶片中残留硬脂酸含量明显下降,且只有比表面积大于普通氧化锌的纳米氧化锌,才对绝热层中残留硬脂酸含量具有改善效果。此外,含有较大比表面积的(30±10) nm氧化锌的绝热层硫化后残留硬脂酸含量仅为其他胶片的43.48%~50.84%。因此,采用比表面积较大的纳米氧化锌材料有利于促进氧化锌与硬脂酸的反应完全,降低EPDM绝热层中残留硬脂酸含量,改善绝热层界面粘接性能。  相似文献   

18.
运用低温等离子体处理三元乙丙橡胶(EPDM),进行表面改性。通过扫描电子显微镜(SEM)、接触角测量仪,对三元乙丙橡胶处理前后的表面形貌和润湿性进行表征;采用电子万能试验机,对三元乙丙橡胶改性前后的力学性能和粘结性能进行测试。实验结果表明,处理功率为4 kW,工作气体流量为0.8 L/min,处理时间为20 s,以此作为工艺参数,运用低温等离子体,处理三元乙丙橡胶后,接触角减小了86%,剪切强度提高了142.6%,扯离强度提高了98.2%,而且三元乙丙橡胶通过低温等离子体处理后的粘接强度为通过手工打磨处理后的粘接强度的2倍。  相似文献   

19.
建立了固体推进剂/衬层界面裂纹的指数型分层界面层模型,该模型将界面层划分为多个子层,并在每一子层中用指数函数表示界面层初始模量的分布。应用Fourier变换方法推导出一个Cauchy型奇异积分方程组,采用配点数值方法得到平面应力状态下裂纹问题的半解析解,并讨论了法向和剪切应力加载下界面层参数对应力强度因子的影响。结果表明,界面层模量降低时,应力强度因子的绝对值显著减小;界面层厚度对应力强度因子的影响相对不明显。  相似文献   

20.
环氧化端羟基聚丁二烯/H12 MDI型聚氨酯固化工艺的研究   总被引:1,自引:0,他引:1  
采用环氧化端羟基聚丁二烯(EHTPB)与H12MDI固化交联形成聚氨酯弹性体,利用DSC外推法研究了EHTPB/H12MDI型聚氨酯固化的最佳反应温度,再通过测量固化产物的力学性能研究了其他最佳固化工艺参数,包括反应时间、固化剂H12MDI用量、EHTPB环氧值以及扩链剂BDO用量,并在相同条件下对端羟基聚丁二烯(HTPB)/H12MDI和EHTPB/H12MDI固化产物的力学性能进行了比较。结果表明,EHTPB/H12MDI固化产物具备更好的力学性能,并得到了EHTPB/H12MDI型聚氨酯弹性体的最佳固化工艺条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号