首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据不同推进剂及目前热防护材料的性能特点,采用了一种组合药柱的新方法,用来降低喷管内表面的温度和烧蚀率。该方法的主要设计思路是将药柱形式分为前后两段,靠近发动机头部段使用高能推进剂,靠近喷管段使用低燃温推进剂。低燃温推进剂占总推进剂质量百分比的很少一部分。使用这样的组合药柱形式,低燃温推进剂燃烧产生的气体会在喷管内表面形成一层低温帘幕,从而降低喷管内表面的温度和烧蚀率,使高能推进剂在固体火箭发动机设计上得到应用,并有助于提高发动机的质量比。  相似文献   

2.
本文介绍了用于大型固体推进剂火箭发动机的组合式无喷管、无壳体点火器方案的设计、分析及试验结果。该点火方案的主要优点是可以把60%左右的点火器消极重量变成药柱有效载荷。点火系统的主装药由点火器周围的发动机前段装药所构成。这段装药又是发动机推进剂药柱的一部分,设计成象一个小的低压无喷管火箭发动机,给主发动机推进剂段提供足够的压力和热流输出以实现发动机点火。前段推进剂的点火由一个比较小的径向排气的BKNO_3烟火剂药片点火器来实现。试验计划需验证三个方面的设计问题:  相似文献   

3.
水下固体火箭发动机的负推力现象研究   总被引:3,自引:0,他引:3  
针对水下固体火箭发动机工作环境压强高的特点,结合固体推进剂的燃烧特性,采用UDF方法定义喷管入口边界条件,建立了固体推进剂燃气质量生成与水下超音速气体射流的耦合计算模型。将该模型的计算结果与水下固体火箭发动机的实验测量结果进行对比,验证了该模型的合理性。研究发现,水下固体火箭发动机在点火初期会出现负推力现象,负推力产生的原因是发动机点火初期,喷管内被过度压缩的燃气冲出喷管后,在喷管尾部形成一个超音速燃气泡,超音速流动使泡内压强降低;同时受到流动惯性作用的影响,气泡持续膨胀使泡内压强进一步大幅降低,发动机前后端面上的压差最终导致负推力现象产生。  相似文献   

4.
本文提出用无喷管火箭发动机终止燃烧后测得的燃层厚度,辅之以测得的p(x,t)曲线,来辨识无喷管火箭发动机工作条件下推进剂侵蚀燃速规律的一种方法。该方法克服了以往用P-t曲线间接辨识燃速方法中存在的问题,避免了复杂的内弹道计算,大大缩短了计算机时,实践表明,这种方法辨识结果稳定,用其结果计算的燃层厚度与实验值符合较好。  相似文献   

5.
简述了国外低成本固体火箭技术研究背影和动向,分析了国外降低固体发动机成本的主要技术途径,着论述了低成本的固体推进剂原材料及推进剂生产工艺,低成本的喷管材料及喷管制造技术、低成本的固体自动化制造技术 。  相似文献   

6.
本文根据一系列复合推进剂固体火箭发动机的中止燃烧试验,提出了三氧化二铝颗粒在发动机喷管内的沉积计算模型,并通过轴对称喷管两相跨音速流场计算及喷管传热分析,预示喷管内的沉积规律及沉积对喷管壁内温度场的影响。预示结果与实验结果基本相符。文中还比较了燃烧室压力,推进剂中铝含量对沉积影响的实验结果和理论预示结果,它们也基本相符。  相似文献   

7.
关于无喷管固体火箭发动机,Price E.W.早在1954年就发表了理论探讨的文章。1960年由美国NASA资助,开始做7英寸发动机的实验研究。研究结果表明,无喷管发动机的性能是可以预计的,能达到相当高的水平。它结构简单,经济效益也很好。目前.无喷管发动机主要用于小型火箭或大发动机的点火发动机上。从1976年开始美国还将它用到组合式火箭——冲压发动机的预先研究工作中去[2]。美国几种无喷管火箭的性能列于表1、2和图1[3]。无喷管火箭发动机的研究,有理论价值,也有实用意义。  相似文献   

8.
本文根据片型装药发动机对两种双基推进剂四种复合推进剂在四种药型下的试验结果,分析了在无喷管发动机内压强—时间关系、燃气流速和装药燃速沿通道的变化、特性速度及推进剂特性的影响。论述了推进剂的基础燃速对无喷管发动机工作特性的影响,侵蚀燃烧问题,装药通道内的几何喉面与流场中音速截面的关系等。对无喷管发动内设计有一定参考价值。  相似文献   

9.
中国从1958年开始复合固体推进剂火箭发动机的探索和研制工作。根据航天技术发展的需求,促使复合固体推进剂火箭发动机从小到大逐步发展起来。在三十多年的研制过程中。解决了壳体材料和成型工艺、推进剂配方和装药工艺、喷管和推力向量控制技术,安全点火和高空点火技术、各种环境试验技术、无损检测和质量保证技术、地面试验和测试技术等。已形成了固体火箭发动机研究、设计、试验、生产配套的基本条件,同时为中国卫星发射提  相似文献   

10.
固液混合火箭发动机燃烧室和喷管流动数值模拟   总被引:4,自引:1,他引:4  
固液混合火箭发动机是采用液体作为氧化剂,固体作为燃料的一种典型的混合火箭发动机.固液混合火箭发动机中的燃烧和流动问题是固液混合火箭发动机设计中的关键问题,对固液混合火箭发动机的燃烧室和喷管进行一体化计算很有必要.利用二维轴对称N-S方程和组分方程对选用液氧/端羟基聚丁二烯推进剂的固液混合火箭发动机的燃烧室和喷管进行了一体化计算.计算采用LU时间隐式格式、MUSCL空间离散和Van Leer矢通量分裂方法,采用有限速率化学反应模型,对化学源相进行了点隐式处理.计算中分别采用了一步化学反应模型和两步化学反应模型方案,计算了多个氧化剂流速和燃烧室压强下的燃烧室和喷管流场分布,对化学模型进行了选择,为固液混合火箭发动机的设计提供了依据.  相似文献   

11.
火箭发动机喷管的工作环境极为恶劣,固体火箭发动机在热试状态下经常会出现因喷管喉衬加工过程中的工艺缺陷导致的开裂失效事故。针对某型固体火箭发动机试车后喷管喉衬断裂现象,基于真实裂纹形貌进行建模,并开展发动机典型工作时刻下的三维两相数值模拟,旨在获得喷管喉衬不同断裂间隙内流场温度、压强、热流密度与速度场分布及对比情况。研究...  相似文献   

12.
本文介绍了美国侏儒导弹三级固体发动机的研制进展和主要性能,着重分析了发动机采用的石墨/环氧复合材料亮体、NEPE推进剂和碳/碳喷管等三项先进固体火箭技术。  相似文献   

13.
从理论上分析了单室双推力固体火箭发动机产生两级推力的机理.给出了在喷管膨胀比不变的条件下,采用改变燃烧面积和改变推进剂燃烧速度的方法设计出的若干种斗室双推力固体火箭发动机的装药型式.扼要介绍了单室双推力固体火箭发动机近年来应用新技术、新材料和新工艺的情况.  相似文献   

14.
提出了予示固体推进剂火箭发动机的比冲和特性速度的分析方法。这个方法强调了二维两相流分析,它是以准确的跨音速解为基础,并且给出金属含量高的推进剂的大部分性能损失。它应用于可忽略燃烧损失和出口锥上无粒子撞击的发动机。以一系列的缩比发动机、全尺寸发动机和5台装有高膨胀比喷管的远地点发动机实验结果为背景,评价了它的有效性。膨胀比在很宽的范围内(从9到92)在予示值和实验结果之间完全一致。从本研究得出结论,提出的这个方法是性能予示的一个很准确工具,并且对高膨胀比喷管的气动力设计和分析很有用,这样的喷管对期待中的未来应用是特别有意义的。  相似文献   

15.
本文综述了80年代以来固体推进技术的几个主要发展动向:1.固体火箭发动机总体结构的新发展;2.广泛采用石墨纤维缠绕壳体;3.改进喷管结构及喷管材料;4.开展固体推进剂新品种的研究;5.提高生产自动化程度,降低固体发动机成本。  相似文献   

16.
本文提出了计算无喷管固体火箭发动机压力建立过程的 P(x,t)模型,它的控制方程是一组一维非定常两相非平衡流和一组一维非定常两相非平衡流动力学方程,该方程采用 MacCormack 显示差分格式求解.本文还建立了在跨音速和超音速气流流动下的侵蚀燃烧模型,该模型适用于无喷管固体火箭发动机.利用本文的模型可精确预示无喷管固体火箭发动机点火瞬变过程的内弹道性能,并可研究无喷管固体火箭发动机的内流场变化规律.  相似文献   

17.
近年固体火箭推进技术发展趋势   总被引:3,自引:0,他引:3  
讨论了在冷战结束后的政治、军事环境下固体发动机应用领域的动向和固体火箭推进技术的发展特点,重点了发动机设计及固体推进剂、壳体、喷管、点火系统等单项技术的发展趋势。  相似文献   

18.
含铝复合推进剂分布燃烧数值模拟   总被引:2,自引:0,他引:2  
为研究发动机内含铝复合推进剂以及铝的燃烧,基于FLUENT软件,应用EDC模型和颗粒表面反应模型,建立了固体火箭发动机内流场两相流分布燃烧模型,对AP/HTPB/Al复合推进剂固体火箭发动机内流场进行了数值计算。计算结果表明,与表面燃烧相比,铝的燃烧导致发动机内出现了延长的燃烧区域,铝燃烧贯穿整个发动机燃烧室,形成分布燃烧;延长的燃烧区域导致发动机内流场分布不均匀,燃烧室是非等温的,温度由燃面附近的2600 K增长到3600 K,燃烧室核心区域温度约为3200 K;铝燃烧消耗的同时生成其他产物,也导致燃烧室内燃气组分和密度的分布不均匀;铝的燃烧是一个复杂的物理化学过程,对发动机内流场有着重要影响,颗粒相始终贯穿整个发动机,最终从喷管喷出。  相似文献   

19.
小型无喷管火箭发动机的独特特性之一表现在瞬态燃烧能从稳态变化到低频整体不稳定方式。闭环反馈系统模型中有两个传递函数:燃烧速率的压力—耦合函数和发动机质量守恒的一阶滞后传递函数,根据反馈系统稳定图上的工作线可对这个现象进行理论解释。当把传统的压力—耦合响应函数应用于第一个函数时,发现经过一次简单燃烧试验就可确定响应函数的参数。试验中采用了四种不同的复合推进剂,其中推进剂的氧化剂颗粒大小分布各不相同。从燃烧试验得出的数据散布在稳定图上。响应函数的参数分散不会使表面反应的活化能保持为常数。如早期报道的那样,在复合推进剂中应用公式化响应函数的有效性值得怀疑。把L型燃烧器的方法应用到无喷管火箭发动机中,可以直接测量响应函数。已经表明,低频燃烧不稳定性中一维传热起主要作用,同时因复合推进剂结构不均匀引起的付效应也存在。由于振荡频率与中等大小氧化剂颗粒燃烧面移动引起的特征频率重叠在一起,付效应可归于复合推进剂结构的不均匀性。  相似文献   

20.
汪志清 《上海航天》1997,(5):9-12,17
研究了两种高燃速固体推进剂配方燃速的稳定性和细料度氧化剂(d50:7 ̄9μm,3 ̄5μm)粒度及其分布对推进剂燃速性能的影响。在此基础上,研制出燃速分别为30mm/s和38mm/s的两种高燃速丁羟固体推进剂。并应用于Φ208无喷管发动机的同心层装药。该推进剂具有良好的力学性能和能量特性,在较大压强(p=1960.1 ̄14710kPa)和温度(-40 ̄+50℃)范围内性能稳定、可靠。无喷管发动机的总  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号