首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双组元离心式喷注器10 N发动机偏工况试验   总被引:1,自引:0,他引:1  
根据国内外同类发动机研制经验,双组元10 N发动机在入口压力为0.8~2.2 MPa范围内,入口压力偏差会使发动机真空比冲、燃气温度等性能产生较大变化。为了获得双组元离心式喷注器10 N发动机在落压推进系统要求的入口压力范围内性能,通过采用小流量喷雾试验台和42 km高模试验台,对偏工况条件下的冷态性能及热试性能进行试验研究。试验结果表明:该发动机额定入口压力1.58 MPa时真空比冲为2881 N·s/kg;当入口压力在0.6~2.5 MPa变化时,对应真空推力从4.7 N增加到14 N,落压比为3;入口压力0.6 MPa时真空比冲为2600 N·s/kg,入口压力2.5 MPa时真空比冲为2956 N·s/kg;入口压力在0.6~2.5 MPa试验范围内,发动机燃烧室壁温均低于材料许用温度,表明发动机热设计优良,可满足双组元落压推进系统对姿控发动机的性能需求。  相似文献   

2.
高翔宇  孙纪国  田原 《火箭推进》2013,39(4):19-23,51
为了研究火箭发动机推力室冷却通道内的甲烷传热和流阻特性,研制了缩比推力室甲烷传热试验系统,并以推力室挤压热试验的形式进行了5次超临界甲烷传热试验和2次亚临界甲烷传热试验研究.超临界甲烷传热试验燃烧室压力为5.5~7.5 MPa,燃烧室氢氧混合比约为6.8,甲烷温度为128~230 K,甲烷冷却剂流量为5~7 kg/s,甲烷冷却剂入口压力为8.3~11.7 MPa.亚临界甲烷传热试验的室压约为4 MPa,氢氧混合比2.8,甲烷温度为:128~189 K,甲烷冷却剂流量约为2.9 kg/s,甲烷入口压力为3~3.5 MPa.通过试验研究获得了液态甲烷在推力室冷却通道内超临界压力状态和亚临界压力状态下的传热和流阻特性.  相似文献   

3.
星用第三代铼/铱材料490 N发动机研制进展   总被引:1,自引:1,他引:0       下载免费PDF全文
提高轨控发动机的真空比冲可以有效减少卫星变轨推进剂的消耗量,从而延长卫星的在轨工作寿命或增加有效载荷质量。介绍了我国在研的卫星用第三代铼/铱材料490 N发动机设计方案、技术攻关和试验情况,对工程化应用存在的问题进行了分析,并提出了改进和优化方案。在第二代490 N发动机的设计基础上,第三代490 N发动机成功攻克了可靠传热稳定工作喷注器、高性能喷注器与燃烧室匹配以及新型高温抗氧化材料制备等关键技术,真空比冲提高了10 s,达到325 s。两台发动机均通过了25 000 s鉴定级高空模拟热试车寿命考核,性能指标达到国际先进水平。但是针对试车子样数较少和铼/铱燃烧室制备工艺困难的问题,仍需进一步开展铼基体和铱涂层的高温性能研究,并继续优化发动机设计。  相似文献   

4.
本文介绍了 Dasa(戴姆勒-奔驰宇航公司)新型的400N 远地点发动机鉴定试验结果。该发动机采用 MMH/N_2O_4地球可贮存推进剂,其比冲比 Dasa 第一代再生冷却的远地点发动机至少提高98m/s。根据 Dasa 10N 推力室的经验,新型的400N 发动机也采用了无涂层的铂合金推力室,同时喷注器也进行了改进,能够满足性能指标要求。一台发动机完成了鉴定试验,先进行一般的验收试验,接着进行鉴定试验。经充分的验证表明,发动机在420N、入口压力1.7MPa 状态下,额定比冲3116m/s.在鉴定试验中,发动机共消耗推进剂2663kg,重复点火起动128台次,并完成10个完整的热循环。最长工作时间4000s,热和冷的推进剂入口温度45℃和0℃。He 气引入的发动机稳定性评定,高温起动能力以及从1.3MPa 至2.0MPa 的供应压力的变化等,均作为鉴定试验大纲的内容。本文阐述了鉴定试验的结果,并进行了讨论。另外,还报告了三台发动机在轨飞行结果。  相似文献   

5.
本文介绍了 ARC 用于卫星位置保持的22N 推力室的研究试验.这种新型推力室采用无涂层的 Pt/Rh 合金燃烧室,稳态工作的推进剂耗量已经超过了目前硅化物涂层的铌合金推力室,额定工况下的比冲可达2943m/s。推力室具有很小的集液腔,脉冲比冲和脉冲再现性得到提高,并且已经顺利地完成了各项研究试验,推力室的热稳定性得到验证。  相似文献   

6.
本文讨论了10吨级高性能膨胀循环发动机的设计研究,采用的室压超出了目前的钢管极限,以便在给定的钟形喷管设计和发动机长度下改善发动机的比冲性能。发动机的基础推力为100kN,可扩展到150kN。发动机最大长度2.4m,最大质量275kg,最小比冲为4512.6m/s。结果发现采用现有技术或稍加改进就可以实现100kN 的发动机,而150kN 的增强型发动机则需要能提高推进剂热性能的新燃烧室技术.为达到这一目的,Dasa正在实施先进的膨胀燃烧室技术计划。采用可延伸喷管可得到大约68.7m/s 的比冲增量,但以增加重量为代价。对阿里安5增强型低温上面级发动机,要求发动机推力150kN,调节能力为30%。本研究以此作为推力室性能优化的基础,并提前设计了这一新型欧洲上面级发动机。  相似文献   

7.
几年来,TRW 一直在研究高性能的450N 双组元远地点发动机,室压0.7MPa。最初,采用化学气相沉积(CVD)的铼推力室,试验证明具有很长的寿命和很高的性能。但是,为了改善铼推力室的生产工艺,降低成本,在 NASA—LeRC 资助下,TRW 已研制一种取代 CVD 的粉末冶金(PM)铼燃烧室,其内外表面涂铱,外表面再涂高辐射系数的氧化铪。该发动机用 N_2O_4—MMH 和 N_2O_4—N_2H_4两种推进剂进行了试验,证明有很高的性能。发动机累计工作时间超过10000s,最长工作时间700s。本文将介绍和讨论这些试验结果。  相似文献   

8.
构造了基于超声速汽液两相流液化装置的涡轮排气液化循环发动机系统方案,对性能进行了分析、计算。结果表明:该方案可将燃烧室压力提高至35 MPa,氢主涡轮泵出口压力降低40.4%,燃气发生器室压降低38%,发动机比冲提高50.9 m/s,同时水液膜可发挥较好的热防护作用,系统冷却安全、可靠。  相似文献   

9.
为研究微小推力室的工作特点,建立了双组元微小推力室的地面实验装置和数据采集系统。在内径为4mm,喉部直径为0.4mm的微小推力室内,采用氧气和甲烷气体作为推进剂进行了点火热试车,实时测量燃烧室压力和壁面的温度分布。实验结果表明,在富燃工况下,随着混合比的升高,燃烧温度和燃烧室压力逐渐升高;当混合比一定时,随着总流量的增加,燃烧室压力增加,微小推力室的推力和比冲也在升高。微小推力室的真空推力达到120mN,真空比冲达到了240s。  相似文献   

10.
推力室多孔面板发汗冷却试验研究   总被引:1,自引:0,他引:1  
为了研究液体火箭发动机推力室喷注器多孔面板发汗冷却特性,以缩比推力室挤压热试验的形式开展了多孔面板发汗冷却特性研究,试验采用常温气氢对喷注器多孔面板进行发汗冷却。发汗冷却试验共进行5次,燃烧室压力为3.9~7.6 MPa,燃烧室氢氧混合比为2.8~7.2。研究结果表明在本试验研究状态下面板燃气侧温度为680~830 K...  相似文献   

11.
辐射冷却是上面级和空间液体火箭发动机推力室身部最常用的冷却形式,近年来在部分大推力、高性能二级火箭发动机喷管中也得到了应用。辐射冷却身部材料的耐高温性能和密度,直接影响液体火箭发动机的比冲、推重比和可靠性。通过查阅国内外文献,综述了钛合金、高温合金、难熔金属和碳纤维复合材料等材料在国内外液体火箭发动机辐射冷却身部中研究和应用情况,结合液体火箭发动机推力室身部燃烧室段和喷管段服役工况,对不同材料特点进行了分析。研究对标未来高性能、高可靠和低成本液体火箭发动机的发展需求,并对近年来发展起来的铱/铼/碳-碳复合材料、低密度铌合金和3D打印难熔合金进行了概述。  相似文献   

12.
高性能的俄罗斯液氧/煤油发动机NK-33   总被引:1,自引:0,他引:1  
NK—33液氧/煤油火箭发动机是由萨莫拉国家科研生产联合体——“TRUD”为俄罗斯N—1登月火箭研制生产的。这种四级型的 N—1火箭所使用的发动机均为液氧/煤油火箭发动机,其中30台 NK—33发动机用于第一级,8台与 NK—33发动机类似而面积比更大的 NK—43发动机用于第二级,四台 NK—39发动机用于第三级,一台除带有常平座外类似于 NK—39发动机的 NK—31发动机用于第四级。所有上述的液氧/煤油发动机都是六十年代研制的,均采用一个富氧预燃室产生涡轮燃气,气氧与热煤油经过分级燃烧喷注器在8.964~15.169MPa 绝压下燃烧。NK—33、NK—43和 NK—39发动机可控制发动机簇的推力,并提供火箭的推力向量控制。由于采用高室压,NK—33发动机的设计实现了较高的性能和很轻的结构重量。富氧预燃室的采用,使得发动机有较高的燃烧效率和燃烧稳定性。在预燃室中,全部的液氧以58:1的混合比燃烧,所产生的628.15K 的富氧燃气全部用来驱动涡轮泵的涡轮,然后进入喷注器和燃烧室。NK—33发动机的结构牢固可靠,可实现很高的泵出口压力和14.480MPa 绝压的高燃烧室压力,因此,其面积比可达27:1,可产生2913.57m/s 的海平面比冲和3274.1m/s 的真空比冲。气氧和热煤油喷注器可保证发动机推力降至23%推力水平时仍能稳定燃烧。各次试车之间,无需使用溶解剂清洗 NK—33发动机的零件,也没有发动机零件的碳化现象,这是由于取消了富燃料气发生器和降低推力室冷却套中的煤油温度的缘故。NK—33发动机在用于飞行计划以前进行了充分的试验,共进行了910多次试车,累积点火时间达211,800秒。研制和鉴定完成后,先后共交付了250台 NK—33发动机,可靠性指标达到0.996。已经证实,NK—33发动机是一种高性能的助推发动机。它结构牢固可靠;所采用的技术,到目前为止,未见于美国的发动机。NK—33发动机可凭借低成本和高飞行可靠性改进运载火箭的性能。  相似文献   

13.
本文主要介绍萨莫拉国家科研生产联合体(TRUD)研制的 NK—33、NK—43、NK—39和 NK—31可重复使用的闭式循环液氧煤油发动机方面的经验。这些发动机结构布局经济合理,具有真空比冲为3247.11m/s~3462.93m/s(对应于 NK—33和 NK—31发动机的比冲),质推比约为0.000815kg/N(对应于 NK—33和 NK—43发动机)的最佳性能参数。本文探讨了在这几种发动机的研制和主要组合件的研究过程中产生的主要问题。此外本文也介绍了燃气发生器、涡轮泵组件、推力室和发动机总体结构的主要参数、试验数据和试车数据的处理方法。  相似文献   

14.
本文回顾了旨在改进星船上推进系统应用的低推力化学火箭发动机的性能而正在进行的研究计划。通过建立燃烧和流动物理过程的新的预估方法;采用高温材料;改进部件设计优化性能;利用高性能推进剂等项措施.提高低推力化学火箭发动机的性能和工作寿命。改进的预估方法是通过局部和全局的预估值与试验数据的比较得到的。预估值是从有限反应速率动力学的 RPLUS Navier-Stokes 的计算机程序和联合军队、宇航局的方法中得出的。数据是从激光珍断系统和发动机试车实测性能得到的。结果表明,喷注器和燃烧过程的模型需要改进,流动显影技术,例如二维激光—感应莹光(LIF)显影技术对解决流动对称和剪切层的燃烧过程有所帮助。高温材料的制造工艺还在探索中,利用这些材料的小发动机正在进行设计、生产和试验工作。防氧化的铼涂铱保护层用化学气桕沉积工艺制成,从而使燃烧室工作温度升高800K。在地球可贮存推进剂(四氧化二氮和-甲基肼或无水肼)的发动机上,取消液膜冷却,改善燃烧效率.并控制喷注器的热沉温度,通过组合件的重新没计。获得了性能增益。铼铱两种材料互相扩散情况和抗氧化特性表明,推力室要求的几十小时的使用寿命是可以达到的。推力为22、62、440和559N 的火箭发动机已经设计、生产和试验了。试验证明,比冲性能提高了98~196N·S/kg。更高性能的推进剂通过了鉴定。这些推进剂(定义为空间可贮存推进剂),包括作为氧化剂的液氧,作为燃料的氮氢化合物或碳氢化合物。为此,专门设计和生产了液氧/肼发动机,其特征速度效率高达95%,面积比204:1时换算的真空比冲为3381N·S/kg。利用液氧/液氢推进剂,尤其在载人飞船上,其比冲性能可以得到进一步的提高,然而,某些特殊的设计必须改进,并通过飞行考核进一步完善。  相似文献   

15.
介绍了空间飞行器用轻质高比冲1000N轨控发动机的研制过程。为了实现高比冲的目标,从喷注器选型、喷注对设计、冷却设计等方面采取措施,并通过工作过程仿真,对集液腔结构、冷却液百分比和特征长度等参数进行优化设计。发动机身部选取了陶瓷基复合材料(Cf/SiC),利用该材料密度低的特点实现发动机轻质化要求。发动机经过了地面热试车考核,燃烧室外壁温、燃烧效率的仿真值均与测量值基本相当。其中,燃烧效率约96.6%,真空比冲约3 169 m/s,长程试车后发动机结构完好。  相似文献   

16.
洪流 《火箭推进》2003,29(3):59-64
Astrium的航天基础技术分部(SI)正在研究下一代部分可重复使用和可重复使用液体火箭发动机的相关技术.本文总结了对以下主推力室组件所进行的技术研究工作喷注器、主燃烧室、喷管延伸段.对于高性能分级燃烧循环发动机,先进喷注器的研究重点是气态推进剂的喷注.已经为Astrium的燃烧室设计了能够喷注液氧、冷却剂氢和预燃室热气体的喷注器.另一项工作是低成本喷注器方案研究,使单喷嘴的质量流量为标准喷嘴的四倍.对于主燃烧室,可以预见的可用技术是提高可重复使用推进系统中推力室的寿命.本文研究了一种弹性内衬和一种先进热防护壳体.文中给出了这两项技术的缩尺燃烧室试验结果.另一项主要工作是增加先进高性能胀膨循环发动机燃烧室壁的热传导.本文汇总了不同结构的缩尺燃烧室试验结果.对于喷管延伸段,研究重点是陶瓷基复合材料喷管延伸段,最近对缩尺试验件进行了试验,将燃烧室试验压力提高到8MPa.对于未来的高面积比方案(HARC),最近正在设计一种热量测量喷管延伸段,用于测量在满流和分离流状态下的热传导.  相似文献   

17.
本文讨论了推力为222.4kN、上面级膨胀循环发动机先进的膨胀燃烧室的设计和研制。由 Pratt-Whitney 液体空间推进公司完成研制任务,任务来源于美国空军研究实验室(AFRL)的合同要求,用于支持综合高收益火箭技术(IHPRPT)项目。先进的膨胀燃烧室的设计,可以增强冷却剂的换热效果,改善系统的推重比,增加比冲,提高可靠性。这些好处将通过设计、研制、高热流试验以及小型推力室在膨胀循环下承载9.51MPa 室压的能力而得以完成和验证。  相似文献   

18.
一种铼作为基材、铱作为涂层和铱-陶瓷氧化物作为复合涂层的22N 推力室,采用 GO_2/GH_2进行了热试。推力室完成了以下试验,一台在额定混合比(MR)4.6,室压(Pc)0.469MPa 下,工作了将近39h;另一台在额定混合比5,8,室压0.621MPa 下,工作了13h以上。另外四台推力室,采用改进的工艺制造的铱-氧化物作为复合涂层/Re 推力室也进行了热试。在 GO_2GH_2低混合比下的试验表明:在地面可贮存推进剂的相对较低氧化气氛的燃气中,燃烧室的寿命能大大提高。在靠近喷注器附近的区域里,处于混合比接近17的试验表明:混合过程的推进剂可能使铱涂层破坏,而氧化物涂层则起着保护涂层的作用。铱一氧化物复合涂层/Re 推力室能够在苛刻的氧化燃烧气氛中使用,如高混合比 GO_2/GH_2、氧/烃以及液体火炮推进剂。其中一台在额定混合比16.7,室压0.503MPa 下,工作了1.3小时。  相似文献   

19.
三乙胺和硝酸-27S作为自燃推进剂可应用于火箭发动机中。对这两种自燃推进剂的燃烧性能进行了研究,应用逐步逼近法计算其热力性质,当最佳混合比为4.1,燃烧室压力为4.5MPa时,最佳海平面比冲为2786m/s。通过试验证明了三乙胺和硝酸-27S自燃技术的可行性。  相似文献   

20.
氢氧推力室再生冷却内壁故障分析   总被引:2,自引:0,他引:2  
对某氢氧火箭发动机在热试车后推力室再生冷却通道内壁产生裂纹的故障建立了理论分析模型,并进行了温度场与应力场的耦合计算分析。分析认为,推力室内壁在连续的发动机热试车中出现故障的机理为较大的热载荷和机械载荷的组合促使推力室内壁的组合应力超过当地的屈服极限,产生较大的塑性变形所致。采用改善冷却通道的结构形式、燃烧室内壁采用适当厚度的隔热镀层、降低推力室内壁应力比R等措施可以提高再生冷却推力室的热循环寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号