首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
As part of the first Master of Space Studies degree, begun in 1995 and run by the International Space University (ISU), students were required to complete team design projects encompassing the theme of ‘Space of service to humanity’. Below we present summaries of two of the projects: the Space Assisted Network against Desertification (SAND) and the Distant Operational Care Center (DOCC). The first investigates ways countries affected by desertification can gain easier access to high resolution data on the problem. The second provides a model of a remote integrated medical facility capable of treating injured astronauts and others in remote locations.  相似文献   

2.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


3.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

4.
Joseph Lorenzo Hall   《Space Policy》2003,19(4):239-247
The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science—is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA's flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA's organization and organizational change, namely path dependence and “normalization of deviance”. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future.  相似文献   

5.
In London on 20 September, the British National Space Centre and the Royal Astronomical Society convened a ‘Town Meeting’, a usage picked up from NASA. Basically it was a debate without the competetive element, whose topic was the next two of the European Space Agency's four ‘Cornestone’ projects for the ‘Horizon 2000’ programme, total budget 584 million ECU (about £467 million). The question in September was which would be no. 3 and which no. 4. Duncan Lunan reports on the discussion and the choices made.  相似文献   

6.
7.
For Space Transportation System (i.e. Space Shuttle) launched satellites destined for a Geosynchronous Earth Orbit (GEO), there is a need for cost-effective, versatile propulsion systems to provide the perigee burn, i.e. to boost the satellite from Low Earth Orbit (LEO) to Geosynchronous Transfer Orbit (GTO). Surveys of commercial spacecraft activities and future GEO satellite requirements indicate that a spacecraft propulsion system that will provide the perigee burn for a broad range of future commercial satellites would have an excellent market potential.Parametric studies to investigate and define attractive perigee-burn upper propulsion systems (i.e. an Upper Propulsion Stage, or a UPS) are presented. The feasibility and payload capacilities that could be provided by a UPS assembled from essentially off-the-shelf components and subsystems, and the benefits that could be achieved by using major subsystems specifically tailored for the application are presented. The results indicate that attractive UPS configurations can be defined using either off-the-shelf or optimized major subsystems.  相似文献   

8.
Why the draft Treaty on the Prevention of the Placement of Weapons in Outer Space, the Threat or Use of Force Against Outer Space Objects (PPWT) will not work - whereas the Code of Conduct for Outer Space Activities may.  相似文献   

9.
When the oxygen/hydrogen bipropellant combination was selected for use in the Space Shuttle Main Engine, it became apparent that many advantages may result if the Auxiliary Propulsion System Engines were to use the same propellants. A new ignition system, possessing a dramatically new level of reliability, durability and response, is required because the oxygen/hydrogen combination is not hypergolic and the projected missions will require a very large number of fast-response engine starts.The objective of this program was to obtain basic data for spark torch ignition methods at operating conditions typical of a Space Shuttle Orbiter Auxiliary Propulsion System. The research included ignition analysis and igniter design, fabrication and hot-fire test.Extensive testing of spark torch igniters was performed (chamber pressure, 206.8 N/cm2, 300 psia, nominal) in the Igniter-Only and Igniter-Complete Thruster (thrust, 6672 N, 1500 lbF, nominal) operational modes. Reliable, repeatable ignitions were obtained with spark energies of 1–10 mJ. Hot-fire test results showed there is no effect of back pressure (1.013 × 105 to 1.333 × 10?2 N/m2, 7.60 × 102 to 1 × 10?4 mm Hg) or low temperature (O2, 170 K, 306 R; H2, 107 K, 193 R) on the response of the igniter or the ignition delay of the thruster over the ranges tested. Igniter durability and pulse capability were demonstrated with 150 sec of continuous operation and 1000 consecutive pulses, respectively. Durability was further demonstrated with a series of 2500 Igniter-Complete Thruster ignitions at nominal chamber pressure. No limiting variables were encountered. The hot-fire test results showed the spark torch igniter is capable of meeting fully the typical Space Shuttle Orbiter Auxiliary Propulsion System mission requirements.  相似文献   

10.
The Special Purpose Dexterous Manipulator (SPDM) is the latest Space Robot developed by the Canadian Space Agency (CSA) and McDonald Detwiller Space and Advanced Robotics (MD Robotics, previously Spar Aerospace) for the International Space Station (ISS). The SPDM has presented its designers with a number of new challenges in performing the Systems Engineering effort required for a complex robotic system:(1) The SPDM initial design was started and attained various levels of maturity for various components under the Space Station Freedom environment, then the Program was stopped and finally restarted under the harsher environment in which the International Space Station is being built.(2) The SPDM is the first space robot to utilize previously developed and space certified robotic components, as well as components with high-commonality to the previously developed ones (electronics, S/W).(3) New requirements levied by the Customer during the negotiations leading to the Program re-start necessitated significant architectural changes versus the SPDM configuration `frozen' when the Program was shut down.(4) The SPDM is the first robotic system of this complexity that is being built under a Firm Fixed Price contract, with the commonality assumptions as one of the cost drivers.This combination of components of various pedigree, coupled with the constraints imposed by an FFP contract have been addressed by the designers through the definition of a novel approach to integrated Systems and Design Engineering.  相似文献   

11.
In fulfilling the National Aeronautics and Space Administration's (NASA) responsibility to encourage the fullest commercial use of space the Space Product Development (SPD) Program, within the Microgravity Research Program Office (MRPO) located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is managing an organization of Commercial Space Centers (CSC's) that have successfully employed methods for encouraging private industries to exploit the benefits of space-based research. Unique research opportunities of the space environment are being made available to private industry in an effort to develop new, competitive products; create jobs; and enhance the country's quality of life. Over 200 commercial research activities have been conducted in space by the CSC's and their industrial partners during the last several years. The success of this research is evidenced by the increasing amount of industrial participation in commercial microgravity research and the potential products nearing marketability.  相似文献   

12.
The Space Exploration Initiative will challenge life scientists with a diverse set of crew medical risks. The varied sources of this cumulative risk are identified and briefly discussed in terms of risk assessment and preliminary plans for risk management. The roles of Space Station Freedom and other flight programs are discussed in the context of exploration medical objectives; and the significant differences between Space Station era (second generation) and exploration medical support systems (third generation) are reviewed.  相似文献   

13.
Kanas N  Ritsher J 《Acta Astronautica》2005,56(9-12):932-936
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.  相似文献   

14.
For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: space suit commonality and interoperability; increased crew productivity and safety; increase in useful life and reduced maintainability; reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European Russian EVA Suit 2000 Development Programme. This paper gives an overview of the results of the feasibility study and presents the joint requirements and the proposed design concept of a jointly developed European Russian space suit.  相似文献   

15.
文章从基本理论及相应试验两方面详细介绍了欧洲 ESA 空间研究技术中心(ESTEC)材料部建立的空间材料质量损失和易挥发可凝物长期预测的方法,并确认此种预测方法具有极高准确度。  相似文献   

16.
The European Space Agency (ESA) initiated a joint project with the National Aeronautics and Space Administration (NASA) and industry partners for improved authoring and execution of Operations Data File (ODF) procedures. The system consists of an authoring tool and a viewer. The authoring tool is currently used by NASA and ESA to write/convert ODF procedures. The viewer will be used onboard the International Space Station (ISS) starting from Flight Increment 11. The new system, thanks to its interaction capability, will help astronauts and operators in the execution of checklist and logic flow procedures that ensure precise performance of experiments and smooth operation of the various systems.  相似文献   

17.
Yasuhiro Kawakatsu   《Acta Astronautica》2007,61(11-12):1019-1028
In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.  相似文献   

18.
This report describes recent progress in the UN Basic Space Science Initiative (UNBSSI), which aims to facilitate space science education and research, and attendant resources in developing countries. In addition to holding workshops across the developing world, the UN Committee on the Peaceful Uses of Outer Space (COPUOS) successfully implemented the International Heliophysical Year (IHY) as a catalyst for improving understanding of the Sun and of solar-terrestrial physics. Building on this it is now preparing for the International Space Weather Initiative (ISWI). Achievements of the former are discussed, as are the goals and anticipated activities of the latter.  相似文献   

19.
《Acta Astronautica》2008,62(11-12):1019-1028
In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.  相似文献   

20.
A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号