首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三维轴编C/C复合材料双向拉伸实验研究   总被引:1,自引:0,他引:1  
设计了双向拉伸十字型试样,采用不同的加载比例和加载方向对三维轴编C/C复合材料进行双向拉伸实验,面内方向施加1∶1和1∶2的载荷,面外方向施加1∶1的载荷。实验结果表明,十字型试样的初始破坏发生在中心打薄区域,材料为脆性断裂。面内双向拉伸破坏主要为径向纤维束的断裂和基体的开裂,断口大多沿60°方向;面外双向拉伸破坏主要以纤维束的断裂、炭棒的拔出和基体开裂为主,断口形貌较为复杂。材料在不同载荷形式下有着不同的强度值,相对于单向拉伸强度,存在强度弱化现象。根据实验数据确定了蔡-吴强度准则的参数,为三维轴编C/C复合材料结构强度设计及校核提供参考。  相似文献   

2.
轴编C/C复合材料组分材料有效性能   总被引:2,自引:0,他引:2  
利用光学显微镜观测和测量轴编C/C复合材料细观编织结构及其尺寸,建立轴编C/C复合材料有限元模型,通过给出组分材料有效性能的变化区间,构造组分材料性能与轴编C/C复合材料宏观有效性能的对应关系,利用径向基函数(RBF)人工神经网络(ANN)方法,对该高度非线性的对应关系进行训练,通过轴编C/C复合材料宏观实验结果,预报其组分材料的有效性能。结果表明,轴编C/C复合材料面内弹性性能基本相同,在测量时可忽略面内纤维束铺设方向的影响;人工神经网络对训练样本有一定的依赖性,但通过多次随机构造样本训练网络,可得到理想的预测结果,且人工神经网络方法具有很好的容错性,能很好地预报轴编C/C复合材料组分材料的有效性能。  相似文献   

3.
采用不同间距、不同根数的纤维束穿刺成型炭纤维预制体,经进一步化学气相沉积、沥青浸渍-高压炭化致密制备穿刺C/C复合材料。拉伸性能测试结果表明,穿刺间距2.1mm、穿刺束纤维根数为12K的C/C复合材料获得高的拉伸强度,Z向拉伸强度131.4MPa,XY向拉伸强度111.3MPa;随着穿刺间距减小、穿刺丝束纤维根数增加,Z向纤维含量增加,Z向拉伸强度明显提高。穿刺C/C复合材料1800℃真空条件下的拉伸强度与室温相当,拉伸模量低于室温,延伸率高于室温;常温拉伸断口较平整,且纤维/基体间的裂纹明显,而高温拉伸断口参差不齐,纤维及基体断面粗糙,呈现出假塑性断裂特征。  相似文献   

4.
为研究三维编织C/C复合材料单轴拉伸渐进损伤与失效强度,考虑了材料内部纤维增强相、基体相和界面随机孔隙缺陷,建立了三维编织C/C复合材料单胞有限元模型。基于Linde等人提出的破坏准则描述纤维束纵向拉伸剪切破坏和横向破坏,基体采用最大主应变破坏准则,界面采用双线性内聚力本构模型和二次应力破坏准则,建立了与单元特征尺度、局部应变以及断裂能相关的指数型损伤演化律。采用有限元法结合周期性边界条件模拟了材料细观损伤起始、演化与失效过程,并预测了材料轴向拉伸强度。结果表明;材料轴向拉伸强度主要由纤维棒纵向拉伸强度控制,与不考虑材料孔隙缺陷的模拟结果相比,考虑材料孔隙缺陷的强度预测值与实验值更加接近,此外,孔隙缺陷对材料拉伸强度的影响大于对拉伸模量的影响。  相似文献   

5.
预制体及基体对C/C复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了预制体结构及其成型工艺和基体类型对C/C复合材料的力学性能、烧蚀性能和微观结构的影响。结果表明,它们对C/C复合材料的拉伸和压缩强度影响不显著,而对剪切性能影响明显。采用CVD成型工艺和树脂炭基体,对于二维预制体,C/C复合材料的剪切强度可达19MPa;对于准三维预制体,C/C复合材料层间剪切强度可达20MPa。不同类型的基体炭对复合材料的耐烧蚀性影响不同,CVD炭具有优异的抗烧蚀性能,树脂炭与沥青炭的抗烧蚀性能较差。采用先沉积后树脂浸渍炭化补充增密,可制备综合性能优异的热结构复合材料。  相似文献   

6.
为研究针刺C/C复合材料高温下力学性能,通过C/C材料试件不同温度下的拉伸、压缩及剪切性能试验,观察试件在高温和外载荷作用下的破坏模式,获得了材料不同温度下的应力-应变曲线。基于对Jones-Nelson-Morgan模型改进并引入温度系数,建立了C/C复合材料高温本构关系模型,并与试验结果进行了对比。结果表明,在温度≤1800℃,针刺C/C材料为线弹性本构关系,C/C材料拉伸、压缩及剪切强度均随温度的升高呈先升高、后降低趋势,在温度≥1600℃后,强度逐渐降低;建立的高温本构模型计算结果与试验结果吻合较好; C/C材料整体表现为脆性破坏,拉伸破坏纤维拔出尺寸较短,压缩破坏断口呈现45°豁口。  相似文献   

7.
编织参数对轴编C/C复合材料热膨胀系数的影响   总被引:2,自引:0,他引:2  
将能量法和有限元方法相结合,预报了轴编C/C复合材料的热膨胀性能,通过与实验结果的对比,验证了预报方法的有效性;考虑编织间距和纤维棒直径的变化,预报了该材料热膨胀性能随编织参数的变化。结果表明,采用能量法预报C/C复合材料的热膨胀系数具有较高的精度;轴编C/C复合材料的热膨胀系数随编织间距的增大而减小;随半径的增大,轴向的热膨胀系数逐渐减小,而径向的热膨胀系数逐渐增加。  相似文献   

8.
界面改性对混杂基C/SiC复合材料性能的影响   总被引:1,自引:0,他引:1  
通过界面设计与实验研究,对C/SiC材料进行C/SiC/C多层涂层界面处理,实现了保护纤维和提高复合材料韧性及调节机械性能的多重目的.同时还研究了界面涂层前后纤维表面处理对复合材料性能的影响,结果表明,对增强体进行界面涂层处理和"酸处理",适当强化弱界面,起到了提高复合材料高温强度保留率和增韧的目的,酸处理+CVD-C/SiC/C界面涂层的C/SiC 复合材料的高温强度保留率达到90%;进行了C/SiC/C界面涂层的C/SiC 复合材料的断裂韧性高达20.72 MPa·m1/2,较未进行界面涂层的C/SiC 复合材料的断裂韧性提高了31.8%.  相似文献   

9.
针刺预制体参数对C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1  
通过针刺与化学气相沉积分别制备碳纤维预制体与碳基体,获得针刺C/C复合材料.研究了针刺密度、针刺深度、网胎面密度等预制体成型工艺参数对C/C复合材料力学性能的影响,并探讨了预制体体积密度与C/C复合材料力学性能关联关系.结果表明,针刺密度在20~ 50针/cm2之间时,C/C复合材料拉伸强度先增后减,而层间剪切强度一直上升;针刺深度在10~16 mm之间时,拉伸强度和层间剪切强度随针刺深度的提高而增加;网胎面密度在100~300 g/m2之间时,拉伸强度和层间剪切强度随网胎面密度的提高而降低;当只改变针刺密度、针刺深度、网胎面密度其中一个成型参数时,拉伸强度和层间剪切强度受预制体密度影响显著,预制体密度可作为预测C/C复合材料力学性能的一个宏观成型参数.  相似文献   

10.
基于C/C复合材料良好导电特性,采用试样直接通电加热技术,对2D C/C复合材料在室温~2 400℃范围的压缩性能进行了试验研究,发展了C/C复合材料超高温力学性能试验方法,得到了2D C/C材料压缩强度、模量随温度的变化规律及其破坏模式。结果表明,2D C/C材料在一定温度范围内表现为线弹性、脆性破坏,压缩强度与模量随温度升高而增加,其中强度较模量增幅显著,强度在2 400℃左右达到最大;纤维束层间界面性能在2D C/C复合材料中起着重要作用,层间界面性能的改变直接影响着材料的力学性能及其破坏模式。  相似文献   

11.
通过对轴棒法编织三维四向C/C复合材料进行压缩、弯曲实验,观测了材料在不同载荷下的应力-应变曲线以及压缩性能和弯曲性能数据,采用扫描电镜对断面形貌进行分析,并研究了材料的破坏机理.结果表明,轴棒法编织三维四向C/C复合材料具有良好的力学性能,编织结构对复合材料性能有较大影响,材料的轴向压缩强度大于径向,但轴向弯曲性能低...  相似文献   

12.
试样几何形状和尺寸对C/C复合材料拉伸强度的影响   总被引:1,自引:0,他引:1  
为了确定C/C复合材料的高温拉伸试样的尺寸和形状,对7种C/C复合材料拉伸试样的室温拉伸强度进行研究。结果表明,为悬挂引伸计传感器而加工的凸台的形状对材料的拉伸强度有明显影响。方形、三角形凸台试样的几何应力集中因子分别为2.41和1.01。拉伸强度与凸台形状密切相关,拉伸强度随着标距宽度和长度的增加呈下降趋势,符合尺寸效应规律,标距长度在30~40 mm变化时,拉伸强度基本不变。  相似文献   

13.
纤维表面处理对单向C/SiC复合材料拉伸强度的影响   总被引:1,自引:0,他引:1  
为改善纤维与基体的界面结合状态,提高C/SiC复合材料力学性能,对炭纤维采用1800℃高温处理、CVI沉积热解炭以及两者联合作用3种方法进行纤维表面处理,研究了表面处理对C/SiC单向复合材料力学性能的影响。结果表明,经过1800℃处理后的纤维表面粗糙度变大,表面沟槽加深,复合材料的拉伸强度是未经表面处理纤维复合材料拉伸强度的2.4倍;纤维表面沉积热解炭后表面粗糙度减弱,其拉伸强度是未经表面处理纤维复合材料的3.1倍;两者联合作用时纤维表面光滑,拉伸强度最高,达708 MPa。  相似文献   

14.
轴编C/C复合材料喉衬的多尺度烧蚀分析方法   总被引:1,自引:0,他引:1  
针对轴编C/C复合材料的结构形式和烧蚀机理,建立了喷管喉衬烧蚀的多尺度分析方法。通过宏观-微观的渐进分析,获得了喷管喉衬的烧蚀率和烧蚀形貌。数值模型反映了喷管热反应边界均匀反应、流场参数、燃气传质过程和材料微观烧蚀对喉衬烧蚀性能的影响。数值计算结果和实验数据吻合较好,表明所建立的数值模型可有效预测轴编C/C复合材料喉衬的烧蚀性能。  相似文献   

15.
为实现4D轴编C/C复合材料细观力学性能的预测,首先针对4D轴编C/C复合材料的结构特点,建立了其代表性体积单元;然后利用均匀化理论和周期性边界条件为理论基础,编写了一般周期性边界条件子程序作为位移边界条件,分析讨论了代表性体积单元的变形特征、应变分布特征,获得了等效刚度矩阵;同时与编写的周期性边界条件子程序作为位移边界条件情况下的计算结果和已有实验结果分别进行了对比。研究结果表明,随着界面强度的增加,一般周期性边界条件预测的材料力学性能相比周期性边界条件预测情况下的误差小,更接近实验数值,从而验证了编写的一般周期性边界条件子程序的有效性和正确性,并进一步得出了代表性体积单元参数对材料力学性能的影响规律,得到了一些有一定指导意义的结果。  相似文献   

16.
分别采用HTA-P30碳纤维、T800碳纤维与PBO纤维进行了层间混杂,研究了不同的混杂比、不同性能的碳纤维以及不同的粘接界面对PBO/碳纤维复合材料的拉伸性能和层间剪切性能的影响。试验结果表明,T800与PBO纤维混杂后,复合材料的强度表现出混杂负效应,而模量和层间剪切强度表现出混杂正效应,且均随混杂比的增大而降低。PBO纤维经过表面处理后,提高了混杂复合材料的弱界面层粘结性能,从而强度、模量、层间剪切强度的混杂效应系数均有不同程度的增大,尤其是层间剪切强度的混杂效应系数提高程度很大,并且与纤维的表面状态密切相关。随着PBO纤维的混入,可降低复合材料性能的分散性(离散系数),提高质量可靠性。  相似文献   

17.
PBO纤维具有十分优异的力学性能和耐高温性能,但由于其分子结构复杂、纤维表面光滑且呈化学惰性,PBO纤维与环氧树脂基体的界面性能与其他纤维相比具有许多差异,且相关实验研究难度较大。采用分子动力学方法,通过动态模拟环氧树脂基体在PBO纤维表面的固化过程,建立了PBO纤维与不同交联度的PBO/环氧树脂界面分子模型。根据体系的相对原子浓度图,确定了界面的存在及其厚度,并通过虚拟单轴拉伸研究了不同交联度下PBO/环氧树脂界面的力学性能。结果表明,不同交联密度下界面厚度基本一致,均在5~6,小于炭纤维等其他增强体复合材料的界面厚度;力学性能随着交联密度的增加而增强,与其他纤维定性类似,但交联度对界面力学性能影响较小,纤维与界面之间的分子作用力对界面力学性能影响较大,使界面力学性能显著增强。  相似文献   

18.
采用“化学气相渗透法 先驱体浸渍裂解法”(CVI PIP)混合工艺制备了固体冲压发动机燃气阀用3D C/S iC复合材料,并对复合材料的显微结构和力学性能进行了研究。复合材料的密度为2.1 g/cm3,复合材料的室温剪切强度和轴向弯曲强度分别为55 MPa和643 MPa。在断裂过程中,复合材料表现出明显非灾难性的韧性断裂行为,试样断裂面存在大量的拔出纤维。复合材料具有优异的绝热性能,Z向热导率为14.5 W/(m.K),X-Y面内热导率为5.0 W/(m.K)。研制的3D C/S iC复合材料燃气阀成功通过冷气轴向抗冲击试验和发动机高温搭载试验考核。  相似文献   

19.
通过针刺与化学气相沉积分别制备碳纤维预制体与碳基体,获得针刺C/C复合材料。研究了针刺密度、针刺深度、网胎面密度等预制体成型工艺参数对C/C复合材料力学性能的影响,并探讨了预制体体积密度与C/C复合材料力学性能关联关系。结果表明,针刺密度在20~50针/cm2之间时,C/C复合材料拉伸强度先增后减,而层间剪切强度一直上升;针刺深度在10~16 mm之间时,拉伸强度和层间剪切强度随针刺深度的提高而增加;网胎面密度在100~300 g/m2之间时,拉伸强度和层间剪切强度随网胎面密度的提高而降低;当只改变针刺密度、针刺深度、网胎面密度其中一个成型参数时,拉伸强度和层间剪切强度受预制体密度影响显著,预制体密度可作为预测C/C复合材料力学性能的一个宏观成型参数。  相似文献   

20.
采用碳纤维无纬布缝合预制体,经"CVI+PIP"混合工艺制备了缝合C/C-SiC-ZrC复合材料。比较不同缝合密度对C/C-SiC-ZrC复合材料力学性能的影响,并通过扫描电子显微镜(SEM)观察复合材料断口的微观形貌。结果表明,在一定范围内,随着缝合密度的提升,缝合C/C-SiC-ZrC复合材料的拉伸强度有所下降,然而剪切强度有明显提升,最大可达24.94MPa。从SEM结果可以看出,无纬布缝合C/C-SiC-ZrC复合材料的拉伸破坏有明显假塑性断裂特性,在剪切载荷作用下,Z向纤维可有效抑制材料层间分层损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号