首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
推进剂中铝燃烧的研究   总被引:1,自引:0,他引:1  
本文概述了固体推进剂中铝的凝聚和燃烧过程及其影响因素,着重介绍了描述铝粉凝聚的“口袋模型”和“PEM模型”,讨论了铝粉的加入对发动机声不稳定燃烧的阴尼作用,对铝粉凝聚的凝滴直径及凝聚分数的经验公式也作了介绍。  相似文献   

2.
含铝复合推进剂分布燃烧数值模拟   总被引:2,自引:0,他引:2  
为研究发动机内含铝复合推进剂以及铝的燃烧,基于FLUENT软件,应用EDC模型和颗粒表面反应模型,建立了固体火箭发动机内流场两相流分布燃烧模型,对AP/HTPB/Al复合推进剂固体火箭发动机内流场进行了数值计算。计算结果表明,与表面燃烧相比,铝的燃烧导致发动机内出现了延长的燃烧区域,铝燃烧贯穿整个发动机燃烧室,形成分布燃烧;延长的燃烧区域导致发动机内流场分布不均匀,燃烧室是非等温的,温度由燃面附近的2600 K增长到3600 K,燃烧室核心区域温度约为3200 K;铝燃烧消耗的同时生成其他产物,也导致燃烧室内燃气组分和密度的分布不均匀;铝的燃烧是一个复杂的物理化学过程,对发动机内流场有着重要影响,颗粒相始终贯穿整个发动机,最终从喷管喷出。  相似文献   

3.
含铝复合推进剂燃烧与流动数值模拟   总被引:1,自引:0,他引:1  
为了研究含铝复合推进剂在发动机中的燃烧与流动、铝金属在发动机内的多相燃烧问题,对某含铝复合推进剂发动机内流场进行数值模拟。基于FLUENT软件,根据气相燃烧与非均相燃烧理论,应用EDC燃烧模型以及颗粒表面反应模型,建立了含铝复合推进剂燃料的二维两相湍流燃烧模型,验证了颗粒表面反应模型计算铝燃烧的可行性,模拟了不同颗粒相Al2O3含量下发动机内流场的分布,得出了压力、温度等发动机参数的变化趋势。结果表明,颗粒表面反应模型可较好地模拟发动机内铝燃烧的宏观现象,发动机燃气中颗粒相含量对发动机内流场有显著的影响。随着颗粒相含量的增加发动机燃烧室压力降低,温度升高;发动机两相流损失增加,发动机推力降低。  相似文献   

4.
固体火箭发动机中铝粉燃烧研究概述   总被引:2,自引:0,他引:2  
介绍了固体火箭发动机中单个铝颗粒燃烧模型的发展与铝颗粒的燃烧特性;阐述了铝粉分布燃烧现象、分布燃烧放热与声场的耦合关系及其对发动机稳定性的增益作用;总结了惰性颗粒的阻尼理论以及在表面旋涡脱落条件下惰性颗粒对压强振荡的放大作用;提出了应从复杂流场中全面考虑铝粉燃烧对发动机的增益与阻尼作用,建立其对发动机工作稳定性影响的综...  相似文献   

5.
本文给出了含铝推进剂燃烧时,气相中燃烧铝滴的直径大小与分布,讨论了配方中氧化剂粒度和铝粉粒度对铝的凝聚程度的影响。实验表明,由粗氧化剂组成的推进剂其燃烧时铝的凝聚是很明显的;并且,对应于相同的粗氧化剂,细铝粉比粗铝粉更易凝聚。实验结果支持复合推进剂中铝凝聚的“口袋模型”。本文还用显微密度分析方法对铝的凝聚燃烧机理进行探讨,发现有三种不同类型的光密度分布曲线,文中称之为液滴型,微滴型和液—汽过渡型,它们分別对应于铝的一种聚集状态。此外,还有一种在底片上无铝亮条出现的称之为气相型,它们的燃烧效率是依次升高的。  相似文献   

6.
理论计算丁羟推进剂组分对凝聚相产物的影响,利用充氮气密闭装置收集含微米级铝粉丁羟推进剂燃烧残渣,采用扫描电镜(SEM)、X射线衍射(XRD)分别对残渣形貌及物相分析,并采用激光粒度仪测试燃烧产物平均粒径,研究铝粉粒度及含量、燃速催化剂含量、氧化剂级配等因素对微米级铝粉在推进剂燃烧过程团聚及燃烧效率影响。结果表明,丁羟推进剂理论生成凝聚相产物随铝粉含量增加而增加,随燃速催化剂含量增加而降低;当推进剂中铝粉含量由18%降至6%,推进剂燃烧残渣团聚颗粒尺寸由112.58μm降至79.03μm,残渣中单质铝相对含量由10.6%降至1.4%,铝粉燃烧效率由82.1%提高至97.1%;铝粉粒度由14μm增加至34μm,推进剂燃烧残渣团聚尺寸从65.24μm增加至92.14μm,推进剂燃烧残渣中单质铝相对含量由2.4%增加至5.1%,铝粉燃烧效率由95.0%降至89.5%;燃速催化剂含量由0.5%增加至2.0%,推进剂燃烧残渣团聚颗粒平均尺寸由112.56μm下降至70.12μm,残渣中单质铝含量由5.1%降至3.5%,铝粉燃烧效率由90.3%增加至93.3%;当粗粒径AP与细粒径AP比例由9∶1降至9∶4时,推进剂燃烧残渣团聚颗粒尺寸由234.21μm降至87.16μm,残渣中单质铝相对含量由8.9%降至2.9%,铝粉燃烧效率由84.4%提高至94.7%。  相似文献   

7.
镁铝富燃料推进剂燃烧残渣影响因素理论分析   总被引:2,自引:0,他引:2  
用最小自由能法计算了镁铝富燃料推进剂一次燃烧室产物的成分,分析了凝聚相C、Mg和A l产物含量的变化对燃烧残渣的影响;主要探讨了AP含量、Mg/A l比例、HTPB粘合剂含量、燃烧室压强对凝聚相C、Mg、A l燃烧产物含量的影响。计算结果表明,增加AP含量、设计Mg/A l比小于3/5、减小HTPB粘合剂含量、降低燃烧室压强均能减少凝聚相产物含量,有利于降低燃烧残渣。燃气发生器实验结果表明,Mg/A l比例对燃烧残渣影响的实验数据与理论分析一致。  相似文献   

8.
为抑制高铝含量固体推进剂燃烧产物的团聚,研究铝含量为18%、含有机氟化物(OF)的固体推进剂不同燃烧区域中铝粒子燃烧的特性。利用高速摄影系统研究熔铝粒子在推进剂燃面的团聚过程;通过对推进剂燃烧火焰特定位置的低温淬熄,获得终止燃烧的含铝固体粒子,并进行形貌和成分分析;使用动态粒径测试系统、激光粒度仪分别对推进剂燃烧火焰区及最终固体燃烧产物的粒子尺寸进行了表征。结果表明,有机氟化物产生的气态氟化烃可抑制熔铝粒子在燃烧表面的团聚,可使推进剂火焰中燃铝粒子的尺寸降低约50%,固体燃烧产物中大尺寸(D≥10μm)颗粒的体积分数下降约74.2%。燃烧性能测试结果表明,有机氟化物使推进剂的爆热及理论火焰温度分别下降9.5%和8.8%,燃速也发生了降低。  相似文献   

9.
固体火箭发动机燃烧室凝相颗粒燃烧特性分析   总被引:8,自引:1,他引:7  
进行了燃烧室收敛段沿径向不同部位的颗粒收集实验,并利用马尔文激光粒度分析仪、扫描电镜、X射线能谱仪和X射线衍射仪对凝相颗粒进行了分析。研究结果表明,在6.8~7.5 MPa下,含铝量17%的HTPB推进剂燃烧产物粒径分布范围在0.27~300μm之间;燃烧室收敛段中心区域凝相颗粒平均粒径比壁面附近区域的小;大多数凝相颗粒为表面光滑、外形规则的实心球体,在燃烧过程中粒径超过40μm的大颗粒易发生开裂破碎等外形变化;在本实验条件下,仍有单质铝存在,铝颗粒的燃烧效率随着压强的升高而增大。  相似文献   

10.
铝镁推进剂固冲发动机两相燃烧数值模拟   总被引:1,自引:0,他引:1  
针对铝镁推进剂中心进气固冲发动机,湍流模型采用Reynolds应力方程模型,气相燃烧采用涡耗散模型,两相流采用颗粒随机轨道模型,铝颗粒燃烧采用Brooks燃烧模型,对二次燃烧和流动进行了三维、两相和化学反应流场数值模拟,对比和分析了冲压空气与一次燃气无旋、同向及反向旋转3种工况下补燃室燃烧流动特性及燃烧效率,并对不同工...  相似文献   

11.
粉末燃料冲压发动机燃烧室两相流数值模拟   总被引:1,自引:0,他引:1  
采用颗粒轨道模型对镁粉燃料冲压发动机的两相流场进行了三维数值模拟,目的是为进一步的实验研究提供指导和参考。结合理论性能分析,提出了一种发动机构型,通过数值模拟分析了颗粒粒径、产物相态等因素对该发动机燃烧效率的影响。结果表明,粉末燃料的粒径较小时点火延迟时间短,颗粒在发动机中的滞留时间长,燃料燃烧效率较高。  相似文献   

12.
飞行过载下燃烧室凝相粒子沉积特征数值研究   总被引:1,自引:0,他引:1  
固体发动机燃烧室部分凝相粒子在飞行过载作用下产生沉积,严重影响发动机工作性能。通过确定燃烧室粒子参数和建立燃烧室内两相流场数值方法,获得了发动机不同轴向过载下粒子运动及沉积规律。与试验数据进行对比分析,验证了计算方法的准确性。数值结果表明,随着轴向过载增大,后封头及喷管潜入段粒子沉积质量逐渐增大。沉积粒子粒径大于凝相粒子平均值,即粒子粒径越大,越容易沉积。轴向过载增大,减小了粒子在发动机内部的驻留时间,凝相粒子平均驻留时间均大于0.13 s。  相似文献   

13.
介绍了激光衰减法测量粒子参数的基本原理.搭建了激光衰减法测量高铝含量富燃料推进剂实验系统,解决了燃烧环境下粒度测试的光学介入问题,对高铝含量富燃料推进剂中粒子参数进行测量,对所得的凝相燃烧产物进行电镜分析,并对电镜照片进行分析处理,计算出燃烧后凝相产物平均粒径,验证了激光衰减法测量粒子参数的可行性和合理性.  相似文献   

14.
白刚玉对微烟推进剂燃烧性能的影响   总被引:3,自引:0,他引:3  
微烟推进剂不能含有铝粉,故必须加入其他燃烧稳定剂来抑制不稳定燃烧。本文提出了燃烧稳定剂选择的关键性指标——粒度及粒度分布的可控性,认为磨料微粉白刚玉(Al_2O_3)是微烟推进剂比较合适的燃烧稳定剂新品种,进而研究了白刚玉粒度、含量对推进剂燃速、压强指数和燃烧稳定性影响的规律性,探讨了燃烧前后白刚玉粒度变化的趋势,并由实测火焰结构证实,该推进剂与双基推进剂火焰结构相似,从而为该类推进剂选择催化剂提供了理论依据.  相似文献   

15.
固体推进剂燃烧中凝相粒子的激光全息测试   总被引:2,自引:1,他引:2  
概述了测试凝相粒子尺寸的基本方法,较详细地阐述了研究燃烧场凝相粒子尺寸分布的激光全息测量方法和测试结果。  相似文献   

16.
硝酸与固体燃料燃烧性能计算研究   总被引:1,自引:0,他引:1  
建立了固液火箭发动机燃烧性能计算模型,采用一维化学平衡(ODE)方法对以硝酸为氧化剂的固液火箭发动机燃烧性能进行了初步探讨。计算表明,固液火箭发动机的比冲、特征速度和燃烧温度以及燃烧产物组分等与氧化剂和燃料的配比有密切关系,氧化剂与燃料质量配比在3.75附近时,固液火箭发动机内部的温度较高,燃烧产物组分以及特征速度达到最佳状态,比冲最高。  相似文献   

17.
高过载条件下固体火箭发动机绝热层失效研究   总被引:4,自引:1,他引:3  
根据化学反应/两相流耦合,建立了铝粒子燃烧模型,通过化学反应速率模型的模化湍流燃烧,对含铝推进剂固体火箭发动机在高过载条件下的内流场进行数值研究。结果表明,过载条件下燃烧室局部异常铝滴积聚及剧烈的化学放热反应是导致绝热层异常烧蚀的主要原因。  相似文献   

18.
铝冰发动机内流场的数值计算   总被引:1,自引:0,他引:1  
为了使用数值模拟的方法计算铝冰发动机的性能,用颗粒表面反应模型和气相反应模型模拟铝颗粒在铝冰发动机燃烧室中与水蒸气的燃烧过程,用欧拉-拉格朗日方法计算颗粒沿轨迹的参数,分析了数值模拟的结果,并进行了相同尺寸的铝冰发动机实验,把数值模拟结果与实验结果进行了比较。数值计算得到的燃烧室稳态工作压强约为9.38 MPa,与实验结果接近,燃烧室平均温度为2950.65 K,相比热力计算得到的推进剂燃烧温度略低。通过对铝冰发动机的内流场数值计算,得到了与实验相符合的结果,验证了数值计算模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号