首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a qualitative calculus for three-dimensional directions and rotations. A direction is characterized in terms of the signs of its components relative to an absolute coordinate system. A rotation is characterized in terms of the signs of the components of the associated 3 × 3 rotation matrix.

A system has been implemented that can solve the following problems: 1. Given the signs of direction and rotation matrix P, find the possible signs of the image of under P. Moreover, for each possible sign vector of · P, generate numerical instantiations of and P that yields that result.

2. Given the signs of rotation matrices P and Q, find the possible signs of the composition P · Q. Moreover, for each possible sign matrix for the composition, generate numerical instantiations of P and Q that yield that result.

We have also proved some related complexity and expressivity results. The satisfiability problem for a qualitative rotation constraint network is NP-complete in two dimensions and NP-hard in three dimensions. In three dimensions, any two directions are distinguishable by a qualitative rotation constraint network.  相似文献   


2.
Abstract

In this paper we investigate the application of qualitative spatial reasoning methods for learning the topological map of an unknown environment. We develop a topological mapping framework that achieves robustness against ambiguity in the available information by tracking all possible graph hypotheses simultaneously. We then exploit spatial reasoning to reduce the space of possible hypotheses. The considered constraints are qualitative direction information and the assumption that the map is planar. We investigate the effects of absolute and relative direction information using two different spatial calculi and combine the approach with a real mapping system based on Voronoi graphs.  相似文献   

3.
Abstract

We propose and systematically formalise a dynamical spatial systems approach for the modelling of changing spatial environments. The formalisation adheres to the semantics of the situation calculus and includes a systematic account of key aspects that are necessary to realize a domain-independent qualitative spatial theory that may be utilised across diverse application domains. The spatial theory is primarily derivable from the all-pervasive generic notion of “qualitative spatial calculi” that are representative of differing aspects of space. In addition, the theory also includes aspects, both ontological and phenomenal in nature, that are considered inherent in dynamic spatial systems. Foundational to the formalisation is a causal theory that adheres to the representational and computational semantics of the situation calculus. This foundational theory provides the necessary (general) mechanism required to represent and reason about changing spatial environments and also includes an account of the key fundamental epistemological issues concerning the frame and the ramification problems that arise whilst modelling change within such domains. The main advantage of the proposed approach is that based on the structure and semantics of the proposed framework, fundamental reasoning tasks such as projection and explanation directly follow. Within the specialised spatial reasoning domain, these translate to spatial planning/re-configuration, causal explanation and spatial simulation. Our approach is based on the hypothesis that alternate formalisations of existing qualitative spatial calculi using high-level tools such as the situation calculus are essential for their utilisation in diverse application domains such as intelligent systems, cognitive robotics and event-based GIS.  相似文献   

4.
5.
6.
ABSTRACT

The goal of this paper is to present a logic-based formalism for representing knowledge about objects in space and their movements, and show how this knowledge could be built up from the viewpoint of an observer immersed in a dynamic world. In this paper space is represented using functions that extract attributes of depth, size and distance from snapshots of the world. These attributes compose a novel spatial reasoning system named Depth Profile Calculus (DPC). Transitions between qualitative relations involving these attributes are represented by an extension of this calculus called Dynamic Depth Profile Calculus (DDPC). We argue that knowledge about objects in the world could be built up via a process of abduction on DDPC relations.  相似文献   

7.
Kravtsov  Yu. A.  Tinin  M. V. 《Cosmic Research》2003,41(4):357-358
A new procedure for restoration of the plasma inhomogeneities with improved resolution is suggested. The procedure deals with the double weighted Fourier transform (DWFT) of the observed wavefield in coordinates of both receivers = (x, y) and sources 0 = (x 0, y 0) [1]. Phase increments between the sources and receivers, being found from DWFT representation, can be used for extracting information on small perturbations of the dielectric constant ~(, z) in a way similar to traditional radio tomography. The resulting resolution of the method is close to the diffraction limit = h/D in the horizontal direction and z = (h/D)2 in the vertical direction, where h is the height of inhomogeneities and D is the length of the ground-based receiving system.  相似文献   

8.
Abstract

Language has been proposed as a medium that serves to promote spatial orientation through integrating geometric and featural information (Spelke, 2003 Spelke, E. S. 2003. “What makes us smart? Core knowledge and natural language”. In Language in mind: Advances in the study of language and thought, Edited by: Gentner, D. and Goldin-Meadow, S. 277312. Cambridge, MA: MIT Press..  [Google Scholar]). This proposal has been explored in dual-task experiments where linguistic resources are blocked by verbal shadowing. Although some studies report disruption in using environmental cues for spatial reorientation, findings have not been consistently replicated, and the source of disruption to reorientation by verbal shadowing remains unclear. We examined conditions under which verbal shadowing affects reorientation. Shadowing of meaningful language disrupted healthy adults' use of geometric and featural information to reorient only when task instructions were unclear and when extraneous visual information provided a source of nonlinguistic interference. Reorientation was examined during the shadowing of meaningful prose or nonword syllables and was similar under both concurrent task conditions. These results indicate that language is not necessary for spatial cue integration.  相似文献   

9.
10.
One of the central questions of spatial reasoning research is whether the underlying processes are inherently visual, spatial, or logical. We applied the dual task interference paradigm to spatial reasoning problems in one dimension, using Allen's interval calculus, in order to make progress towards resolving this argument. Our results indicate that spatial reasoning with interval relations is largely based on the construction and inspection of qualitative spatial representations, or mental models, while no evidence for logical proofs of derivations or the involvement of visual representations and processes was found.  相似文献   

11.
Abstract

Three of the major problems in building autonomous mobile robots are localization, exploration, and navigation. This paper investigates how well different qualitative methods based on angle information, most of them originally invented for representation of spatial knowledge, are suited for addressing these problems. It combines results from discrete and computational geometry with methods from qualitative spatial reasoning, gaining some new insights on the complexity of robot navigation. It turns out that essentially only with panoramas (special roundviews) the qualitative localization problem can be solved in a satisfactory manner. The exploration problem (qualitative map building), remains difficult for all considered approaches.  相似文献   

12.
Variations of the proton spectra in the 0.3–100 MeV energy range based on the data of various instruments installed onboard the IMP-8 satellite are studied for very quiet, quiet, and quasi-stable solar activity periods during the years 1974–1991. As many as 118 spectra were approximated by two power laws: the left-hand and galactic branches of the spectrum were fitted by the AE function and a dependence of the CE type, respectively, the sum J(E) = AE + CE providing the total spectrum. It is shown that the spectra vary within a solar cycle with a shift of the minimum energy (E min) to higher energies with increasing solar activity. It follows from the relations between the spectrum parameters thus obtained that, in particular periods of time, an increase (decrease) of the particle flux in the low-energy branch of the spectrum and an intensification (depression) of the GCR particle flux modulation take place simultaneously. This is manifested in a shift of the spectrum parallel to the energy axis. The study of the spectra in the most quiet time during three successive solar minima have shown that low-energy (0.3–10 MeV) protons, as well as GCR, are subject to the 22-year variation in the solar magnetic cycle.  相似文献   

13.
Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and recurring costs, because they help limit the number of prototypes and tests.The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions.Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements.Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants.In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion:
• Computer-aided method for the preliminary grain design
• Advanced models for SRM operating and performance predictions

References

A Davenas, D Boury, M Calabro, B D'Andrea and A Mc Donald, Solid Propulsion for Space Applications: A Roadmap, 51st IAF Congress, Rio de Janeiro, Brazil (2000).
H Austruy, M Biagioni and Y Pelipenko, Improvement in Propellant and Process for Ariane 5 Boosters (1998) AIAA 98-35588.
Y Longevialle, M Golfier, H Graindorge and G Jacob, The use of new molecules in high performances energetic materials, NDIA Insensible munitions and energetic materials technology symposium, Tampa, Florida (1999).
A.T. Nielsen, J. Org. Chem. 55 (1990), pp. 1459–1466 US Patent 5 693 794, 30/09/1998. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (58)
Bescond P, Graindorge H, Mace H, EP 913374, 6/05/1999.
G Jacob, G Lacroix and V Destombes, Identification and analysis of impurities of HNIW, 31st Annual Conference of ICT (2000).
B D'Andrea, F Lillo, A Faure and C Perut, A New Generation of Solid Propellants for Space Launchers, 50th IAF Congress, Amsterdam, The Netherlands (1999).
D.W. Doll and G.K. Lund, Magnesium neutralized clean propellant (1991) AIAA 91-2560.
C. Beckman, Clean propellants for space launch boosters, Propulsion and Energetic Panel, 84th Symposium held in Aalesund, Norway (2921994).
B. D'Andrea, B. Lillo, A. Volpi, C. Zanotti and P. Giuliani, Advanced solid propellant composition for low environmental impact and negligible erosive effect, ISTS (1998) 98-a-1-12.
J.C Chastenet and A Mobuchon, Prediction of Air Bag Performance, 5 ISCP, Stresa, Italy (2000).
J. Thépénier, D. Ribereau and E. Giraud, Grain Design for thrust trace shaping in segmented solids for the SRBs IAF-99-S.2.09, 50th IAF Congress, Amsterdam, The Netherlands (1999).
J. Thépénier, D. Ribereau and E. Giraud, Application of advanced computational softwares in propellant grain analysis : a major contribution to future SRM development for space application IAF-97-S.4.06, 48th IAF Congress, Torino, Italy (97).
A. Davenas and J. Thépénier, Recent Progress in the prediction and analysis of the operation of Solid Rocket Motors IAF-98-S2.06, 49th IAF Congress, Melbourne, Australia (1998).
D. Ribéreau, P. Le Breton and E. Giraud, SRM 3D surface burnback computation using mixes stratification deduced from 3D grain filling simulation, AIAA 99-2802, 35th AIAA JPC Conference, Los Angeles, USA (1999).
Mary. Y; “Simulation de coulée gravitaire, validation du code MONTREAL.”, DEA mechanics report, 1995.
P. Le Breton, D. Ribéreau, F. Godfroy, R. Abgrall and S. Augoula, SRM Performance Analysis by coupling bidimensional surface burnback and Pressure field computations AIAA 98-3968, 34th AIAA JPC Conference, Cleveland, USA (1998).
P. Durand, B. Vieille, H. Lambare, P. Vuillermoz, G. Bourit and P. Steinfeld, A three dimensional CFD numerical Code dedicated to space propulsive flows AIAA 00-3864, 36th AIAA JPC Conference, Huntsville, USA (2000).
  相似文献   

14.
Abstract

Events, like objects, can be decomposed into parts. Path, the spatiotemporal trajectory of an object during an event, is the most commonly labeled event feature across the world's languages, provides important social information, and is increasingly central to theories of general event segmentation. However, little is understood about how adults visually segment paths. We apply theories developed for object segmentation to help understand path segmentation. Overall subjects segmented equivalent object shapes and event paths in similar ways following patterns predicted by Singh and Hoffman's (2001) Singh, M. and Hoffman, D. D. 2001. “Parts-based representations of visual shape and implications for visual cognition.”. In From fragments to objects—Segmentation and grouping in vision Edited by: Shipley, T. F. and Kellman, P. J. 401459. New York, NY: Elsevier Science..  [Google Scholar] geometric analysis of object parts. There were two notable differences between object and event segmentation: (1) event parsing occurred at points of negative curvature minima and positive curvature maxima as opposed to simply negative curvature minima; and (2) event parsing was more frequent and variable than object parsing. Implications of these results for event perception and categorization are discussed.  相似文献   

15.
Abstract

Visualization and imagistic reasoning appear central to expert practice in science; however, expert use of these strategies on authentic tasks has not been examined in detail. This study documents how science experts use both algorithms and imagistic reasoning to solve problems. Using protocol analysis, we report expert chemists' preferential use of algorithms for solving spatial problems and imagistic reasoning for deducing spatial transformations. We observed experts employ algorithms to solve the majority of spatial tasks while reserving imagistic strategies to solve a class of tasks that required translating between representations. Strategy used varied widely among experts and tasks.  相似文献   

16.
ABSTRACT

In three experiments, after exploring a virtual environment (VE), adult participants made spatial judgments about the location of target objects that were higher and lower than their perceived test location within the VE. In Experiment 1, the locations of the target objects were inferred from verbal instructions. The main results were a tendency to judge objects as closer to the horizontal plane than their true locations, and more efficient downward than upward judgments. Both effects generally accord with findings reported by Wilson et al. (2004a Wilson, P. N., Foreman, N., Stanton, D. and Duffy, H. 2004a. Memory for targets in a multilevel simulated environment: Evidence for vertical asymmetry in spatial memory. Memory & Cognition, 32: 283297. [Crossref] [Google Scholar], 2004b Wilson, P. N., Foreman, N., Stanton, D. and Duffy, H. 2004b. Memory for targets in a multi-level simulated-environment: A comparison between able-bodied and physically disabled children. British Journal of Psychology, 95: 325338.  [Google Scholar]). In Experiments 2 and 3, which were closely modeled on the design of the Wilson et al. studies, regression to the horizontal plane was noted but no downward bias was observed. A misperception in the viewing height between the floors and ceilings of the virtual rooms was apparent in both experiments. The results from the present study together with earlier investigations suggest different hierarchical encoding of between-axis and within-axis information.  相似文献   

17.
On the basis of numerical calculations of trajectories, the peculiarities of motion of submicron-sized particles in the Earth's plasmasphere are investigated. The most important result of these investigations is the found possibility of long-term residence of a microparticle in the Earth's vicinity. This effect is a result of the interaction of the electric charge, induced on a microparticle, with the magnetic field of the Earth. It is shown that the effect of microparticle capture by the Earth's magnetic field takes place in the case when the microparticles having a dimension of about 10–2 m and made of a material having high yield of photoemission are injected into the plasmasphere at altitudes of about several thousand kilometers and also in the case when the microparticles with a dimension of about 10–3 m and made of a material having low yield of photoemission are injected into the plasmasphere at altitudes of about 15000–20000 km and are moving close to the equatorial plane.  相似文献   

18.
19.
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号