首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《航天器工程》2017,(2):53-60
针对视频卫星成像时视轴对地面目标的指向保持问题、面阵传感器与目标区域之间的相对运动导致的成像质量问题,进行视频卫星对地凝视成像姿态调整技术的研究。首先建立使用面阵传感器的视频卫星对地凝视成像姿态运动学模型,分析卫星与地面目标之间的相对运动过程。然后,以成像质量为基本约束条件,提出一种对地面区域目标凝视成像的三轴姿态机动规划方法。最后,对姿态机动规划方法进行数值仿真和验证,依据仿真结果,提出面阵凝视成像对卫星姿态控制精度的需求。数值仿真分析结果表明,文章提出的面阵凝视成像姿态机动规划方法是合理可行的,所需的姿态指向稳定度为0.003(°)/s,偏航轴姿态稳定度为0.069(°)/s,姿态指向精度为0.01°。  相似文献   

2.
敏捷卫星偏流角计算模型研究   总被引:4,自引:4,他引:0  
景泉 《航天器工程》2012,21(4):16-20
TDICCD相机成像时为保证图像品质,要求对偏流角进行修正。文章针对敏捷卫星任意姿态角建立了在星下点成像、俯仰姿态机动后成像、滚动姿态机动后成像,以及滚动加俯仰姿态机动后成像几种情况下偏流角计算模型,并对模型进行了仿真计算。结果表明,敏捷卫星姿态目标计算当中,有必要考虑姿态机动带来的偏流角控制目标变化,以保证姿态控制精度。文章对敏捷卫星的偏流角控制设计、计算和测试验证工作有参考价值。  相似文献   

3.
为解决低幅宽卫星载荷因幅宽小而导致成像覆盖物面窄、效率低、使用复杂的缺陷,提出了一种多条带拼接成像路径自主规划方法。先完成单次侧摆成像规划:通过卫星、目标相对位置关系判断成像时机,规划包括姿态机动开始时刻、成像开始时刻、成像结束时刻、滚动目标姿态角,以及可成像总时长的成像时域确定。再进行多条带拼接成像规划:由成像开始时刻及姿态偏置要求确定条带拼接方向,计算图像拼接点位置参数;根据满足载荷成像最大允许俯仰姿态机动角和姿态机动速度,确定相邻次成像开始时刻卫星位置与姿态机动开始时间;由成像时刻的轨道位置、前后摆俯仰姿态角、图像拼接点位置及侧摆成像偏流角计算相邻次成像滚动目标姿态;根据确定的滚动、俯仰目标姿态角和成像位置迭代计算偏流角,确定偏航目标姿态。给出了相应的单次侧摆成像路径和最大面积多条带拼接成像路径的自主规划计算流程。仿真结果表明:该方法能根据卫星姿态机动能力、轨道参数及载荷视场角自主完成成像条件分析及路径规划,实现载荷对目标区域无盲区最大幅宽成像,提高成像效率及卫星在轨任务自主规划执行能力。  相似文献   

4.
敏捷遥感卫星工作模式研究   总被引:14,自引:7,他引:7  
综述了国外商业遥感卫星发展情况,归纳总结了高分辨率商业卫星的主要技术指标和特点。在充分调研国外敏捷遥感卫星的基础上,从成像目标需求、分辨率与幅宽关系、立体成像三方面总结出此类卫星的技术特点,阐述了发展敏捷遥感卫星的重要意义和作用,并深入分析了实现姿态敏捷控制的技术途径。利用姿态的敏捷控制能力,研究提出了多点目标成像、立体成像、宽幅拼接成像、动态扫描成像等4种典型工作模式,完成了敏捷卫星主要工作模式的分析与设计,并基于此工作模式要求,提出了敏捷卫星工程实现的技术途径。  相似文献   

5.
针对新型敏捷遥感卫星地面测试缺乏验证手段问题,文章提出一种针对敏捷机动成像过程的新型姿态控制精度评估方法,通过设计星地模型算法,根据卫星的定轨数据和高精度姿态数据计算,可得到星载相机成像点在地固坐标系(ECF)的坐标,并引入地表高程数据以提高计算精度,进行成像点位置精度评估,即姿态指向精度评估;通过计算地表镜下点运动速度等衍生参数,进行载荷成像质量评估。与同条件下地面任务规划数据比对,算法精度误差在10米量级,远小于卫星姿态指向误差导致的成像位置偏离,满足地面分析验证精度需求。该套算法已应用于遥感公用平台、某卫星姿态敏捷机动技术地面验证工作。  相似文献   

6.
《航天器工程》2017,(4):7-14
成像幅宽确定时,敏捷卫星的覆盖能力仅取决于成像条带长度。根据敏捷卫星的立体成像过程,推导出基于圆形地球模型星下点轨迹下的立体成像条带长度通用公式,分析了敏捷卫星实现立体成像的最小机动能力需求,并推导出立体成像条带长度所对应的姿态机动能力需求通用公式。基于某卫星典型姿态机动能力进行实际应用分析,得到轨道高度、俯仰预置角、立体观测视角数量等因素对其影响规律。分析结果表明:在其他条件相同时,轨道高度增加或俯仰预置角增大,均会带来立体成像条带长度增加,双视立体成像获取的条带长度也大于三视立体成像。文章采用的分析方法和推导出的相关公式,可为敏捷卫星的总体分析设计提供参考。  相似文献   

7.
卫星机动过程成像的姿态规划与控制研究   总被引:2,自引:2,他引:0  
对有星载相机的卫星机动过程成像的姿态规划与控制进行了研究。为避免目标姿态的任意性产生的控制转序问题,用四元数描述偏流角跟踪控制。从用户角度出发,提出了两种适于机动过程成像的姿态规划模式:一是指定星体相对轨道系摆扫角速度,通过设定摆扫方向与卫星飞行方向成任意角度,可实现任意方向摆扫成像,另一是指定成像点经纬度条带,可实现海岸线等地面目标成像。在摆扫规划姿态的基础上,将绕相机光轴转过经迭代计算的偏流角作为最终的姿态控制基准,给出了高动态姿态机动控制算法。引入陀螺角速度信息以提高滚动姿态机动过程中的动态特性;将星体当前姿态与目标姿态偏差四元数作为姿态控制基准以实现任意姿态最短路径机动;以飞轮作为姿态控制执行机构,设计PD控制律,在机动过程中对内干扰力矩进行前馈控制。仿真结果验证了所提算法的有效性和工程可操作性,可用于对地成像小卫星机动过程成像的姿态规划与控制。  相似文献   

8.
《航天器工程》2016,(2):6-12
针对国内遥感卫星工程中使用的双相机组合成像的配置,分析了双相机组合成像在偏流角修正中可能引入的误差,提出了一种通用的几何分析模型。基于全视场成像仿真方法,结合卫星实际场景,对卫星在不同姿态机动状态下的模型有效性进行了验证。研究结果表明:使用双相机组合成像的卫星,在无姿态机动(星下点成像)或常规侧摆机动时,成像质量基本不受影响;而俯仰机动时,系统将存在较大的偏流角修正残差,因此设计双相机组合成像卫星时不建议采用大角度俯仰机动成像。  相似文献   

9.
敏捷卫星宽幅动态成像姿态调整技术研究   总被引:1,自引:0,他引:1  
针对敏捷卫星在三轴姿态机动过程中"动中拍"的成像任务,分析了推扫条带与星下点轨迹成90°夹角的宽幅动态成像模式,提出了这种成像模式下的姿态调整技术。数值仿真分析了该成像模式对姿态控制精度的要求,并通过卫星工具包(STK)仿真验证了数学模型的正确性。数值仿真结果表明:在10Hz的控制周期下,姿态角的控制精度需求是0.01°,角加速度的控制精度为0.003 0~0.000 1(°)/s2。针对上述指标要求,提出采用小角度内分段匀角速度进行控制的宽幅动态成像姿态调整方法。  相似文献   

10.
面向具备波束指向捷变能力的小型化敏捷合成孔径雷达(SAR)卫星成像需求,提出了通过平台姿态敏捷机动和载荷波束捷变扫描一体化控制实现条带成像、多条带拼接成像、滑动聚束成像等传统成像模式的方法。针对配合成像过程提出的大角度机动和高精度高稳定度连续指向跟踪控制要求,采用5个单框架控制力矩陀螺(SGCMG)组成的"五面锥"构形控制力矩陀螺群作为执行机构,设计了基于姿态四元数和角速度反馈的改进型递阶饱和控制器,实现了平台的敏捷机动和对目标的稳定跟踪指向。数学仿真结果表明:该控制系统有效可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号