首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
讨论了液氧/烃三组元推进剂助推发动机的设计思想,这种液氧/甲烷助推发动机的初步设计还使用了液氢.试验表明,液氧/甲烷/液氢三组元推进剂发动机具有燃烧稳定、燃烧效率高、冷却性能好、能与铜合金燃烧室壁很好兼容等优点,因而可消除或大大减少设计可重复使用的高压烃类助推发动机时可能出现的风险.  相似文献   

2.
航班化航天运输系统的应用需求日趋迫切,基于液氧/甲烷(LOX/LCH4)发动机的可重复使用运载火箭成为国内外研究热点。面向某型运载火箭对一级返回辅助动力系统的需求,提出了基于电动泵的主辅一体化液氧甲烷系统方案和独立挤压式液氧甲烷系统方案,开展了方案比选和应用优势分析,并介绍了液氧甲烷轨姿控发动机和低温表面张力贮箱的研究基础,以及国内首款液氧甲烷轨姿控推进系统集成演示试验情况。液氧甲烷辅助动力系统可以实现全箭推进剂的统一和无毒化,助力运载火箭走向高效及完全可重复使用。选择切实可行的“分步走”策略,优先开展挤压式液氧甲烷辅助动力系统的工程化研制与飞行应用,逐步实现基于电动泵的主辅一体化液氧甲烷辅助动力系统在重复使用运载火箭和低温上面级等领域应用。  相似文献   

3.
国外液氧/甲烷发动机的最新进展   总被引:1,自引:0,他引:1  
<正>液氧/甲烷火箭发动机具有推进剂资源丰富、可重复使用、成本低、无毒无污染、使用维护方便、综合性能好等优点,世界各国一直未曾停止过关于液氧/甲烷发动机的研究,美国、俄罗斯和欧洲围绕液氧/甲烷发动机开展了许多研究工作。近年来,国外已经出现多个以液氧/甲烷发动机(包括太空探索技术公司的"猛禽"发动机、蓝色起源公司的BE-4发动机以及俄罗斯的RD-0162发动机等)为动力的火箭设计方案,这些设计方案大都具有重复使用特征。  相似文献   

4.
王磊  上官石  刘柏文  雷刚  陈强  厉彦忠 《宇航学报》2022,43(11):1566-1574
针对甲烷采用液氮过冷可能发生甲烷冰堵风险,提出了在甲烷中添加乙烷,制备凝固温度更低的甲烷-乙烷混合推进剂的新方案,搭建实验系统测试了甲烷-乙烷凝固温度变化规律。研究发现,随着甲烷含量提高,混合推进剂凝固温度先降低后升高。当甲烷、乙烷比例为0.71∶0.29时,混合推进剂达到最低凝固温度,约73.0 K。当采用常压饱和液氮对混合推进剂过冷时,控制甲烷含量在0.52~0.81间可避免推进剂冻结。相较于常压饱和甲烷,防冻结区的混合推进剂密度提高了24.0%~38.4%,液相存在温区增大至35.7 K~40.5 K。此外,甲烷-乙烷混合推进剂具有理论比冲高、再生冷却性能佳、结焦与积碳小等优势。所提出的甲烷-乙烷混合推进剂在火星探测等任务中具有可观的应用前景。  相似文献   

5.
液氧/甲烷发动机评述   总被引:3,自引:0,他引:3  
孙宏明 《火箭推进》2006,32(2):23-31
简要介绍了国外液氧/甲烷发动机的研究情况。重点论述了甲烷的特点及它用作液体燃料的优缺点。液氧/甲烷发动机具有较高的性能,甲烷有好的再生冷却性能,是一个可供选择的推进剂组合。但由于其密度比冲比液氧/煤油发动机低,使用安全性也不如煤油;性能又比液氧/液氢发动机低,这些都限制了液氧/甲烷发动机的发展和应用。迄今为止,还没有一个液氧/甲烷发动机型号开展研制工作,因而也就不可能有其使用的历史。  相似文献   

6.
蓝箭航天液氧甲烷发动机研制进展   总被引:2,自引:2,他引:0       下载免费PDF全文
张小平  严伟 《上海航天》2019,36(6):83-87
探讨了国内外商业航天运载火箭及其发动机的发展情况,研究比较了液氧甲烷、液氧煤油和液氧液氢等推进剂组合,提出液氧甲烷是商业航天、未来可重复使用液体火箭发动机的发展方向和最佳选择。分析了液体火箭发动机推力选择的原则,确定了蓝箭航天液氧甲烷发动机的推力为80 t和8 t。比较了燃气发生器循环、补燃循环及膨胀循环等动力循环方式,选择了燃气发生器循环的技术方案。介绍了蓝箭航天两型液氧甲烷发动机的总体方案、性能指标、技术创新点、用途和研制情况。  相似文献   

7.
我国可重复使用液体火箭发动机发展的思考   总被引:3,自引:0,他引:3  
重复使用是降低航天发射成本的重要途径之一,是液体火箭发动机未来发展的重要方向。本文分析了可重复使用液体发动机的发展趋势,针对可重复使用运载器对发动机功能的需求,探讨了动力系统方案;对比了液氧煤油和液氧甲烷等推进剂组合和不同循环方式,认为几种发动机方案均可满足重复使用运载器的需求;研究了重复使用发动机的关键技术,提出应重点研究可重复使用液体火箭发动机高温组件热结构疲劳寿命评估及延寿技术、运动组件摩擦磨损技术、结构动载荷控制与评估技术、快速检测评估与维修维护技术、健康监控与故障诊断技术、二次或多次起动技术与大范围推力调节技术等。  相似文献   

8.
<正>早在20世纪60年代,液氧甲烷发动机的概念就已提出,但在当时并没有得到航天大国的重视,苏联和美国的研究重点分别放在液氧煤油发动机和液氧液氢发动机上,在液氧甲烷发动机方面仅进行了一些技术研究。近年来,可重复使用运载器动力的需求提出后,液氧甲烷发动机因具有无毒环保、高比冲、易于重复使用等综合优势,能够较好地满足低成本火箭发射需求,因而受到各商业航天公司的青睐,在其推动下,液氧甲烷发动机技术突飞猛进,一批成熟度各异有代表性的型号脱颖而出。  相似文献   

9.
液氧/甲烷发动机动力循环方式研究   总被引:3,自引:1,他引:2  
张小平  李春红  马冬英 《火箭推进》2009,35(4):14-20,43
综述了液氧/甲烷发动机的研究进展,分析了液氧/甲烷发动机的特性和应用前景,对比了大推力液氧/甲烷发动机的动力循环方式,提出发动机动力循环方式选择应综合用途、性能、研制难度及使用成本等多方面因素,一次性使用的发动机应采用高性能的高压补燃循环,其中部分甲烷冷却推力室的富燃补燃循环较佳;重复使用的发动机应根据工作次数和工作寿命,重点考虑系统压力低的燃气发生器循环和低压的补燃循环.  相似文献   

10.
李文龙  李平  邹宇 《宇航学报》2015,36(3):243-252
为研究烃类推进剂航天动力技术在中国的后续发展和未来应用方向,对比分析煤油、甲烷和丙烷等典型烃类推进剂的物理化学性质和应用特性,简要介绍烃类推进剂航天动力在一次性运载火箭、可重复使用运载器、高性能上面级推进、无毒空间推进和吸气式推进领域的发展动态及应用状况。当前国内外航天动力系统的发展和应用情况表明,以液氧煤油发动机和液氧甲烷发动机为代表的烃类推进剂航天动力将引领未来高性能低成本航天推进系统的发展趋势,依照中国液氧/烃火箭发动机的研制进展和技术水平,以其为核心的新型动力体系在中国未来的天地往返、载人登月和深空探测等多任务适应性方面具有良好应用前景。  相似文献   

11.
液氧/甲烷推进剂组合凭借其比冲性能、绿色无毒、空间贮存特性及原位资源利用等综合性能高的优势,被NASA选定为未来化学空间推进的主要发展方向。Morpheus着陆器顺利在肯尼迪航天中心完成自由飞行与自主着陆试验,标志着NASA的液氧/甲烷空间推进技术达到了从单项技术开发走向系统集成应用的新里程碑。介绍了Morpheus着陆器的研制历程与研发模式,针对其采用的液氧/甲烷轨姿控一体化推进系统,详细介绍了系统构成、推进剂输送方案和供应管路热控方案,以及可变推力主发动机和滚动控制发动机的设计原则、研制历程、涉及的主要技术问题与解决措施等。  相似文献   

12.
无毒、无污染的大推力可重复使用液氧甲烷发动机成为研究热潮,以200 t级全流量补燃循环液氧甲烷发动机为研究对象,结合真实气体效应下涡轮绝热功模型和低温冷却套模型,对比分析了发动机多种调节元件设置方案,结果表明富氧发生器、富燃发生器副路调节元件分别设置为调节器和节流阀时,发动机推力和混合比耦合程度相对较低,利于单一工况参数的调节。在此系统方案基础上,通过仿真对比分析,选择出了最佳推力调节方案。  相似文献   

13.
近年来,低温推进剂在火箭推进领域得到了广泛应用,针对液氧、液氢以及液甲烷等低温推进剂的研究也得到了深入开展。然而,有关低温推进剂热力学性能的研究虽有开展,但各种推进剂性能的特点和差异缺乏研究,对低温推进剂的热力学性能缺乏综合性分析研究和系统认识。统计了1960年以来火箭推进剂的使用以及按照火箭级应用分布情况,对低温推进剂在火箭推进领域的应用与发展进行系统性综述。从低温推进剂的基础热物理性质出发,面向航天推进应用,对不同低温推进剂的动力特性、传输特性、贮存特性以及致密化特性4个方面进行综合评估。结果表明:液氢推力特性最好,氢氧发动机理论比冲可达457 s。相同管路和工况条件下,液氢流动阻力最小,液氧流动温升最小,液甲烷流动阻力和温升特性表现居中。以管长为10 m、管内径为0.1 m的加注管路为例,液氢流动压降小于5 kPa,液氧流动温升小于0.5 K。在地面停放过程中液氧和液甲烷温升小,贮箱增压慢,同时液甲烷热分层现象较弱。对于高5 m、直径3 m的圆柱形贮箱来说,当外界热流密度为50 W/m2时,液氢温升可达4.83 K,液氧仅为1.93 K;液氧贮存周期可达36...  相似文献   

14.
航天动力发展的生力军——液氧甲烷火箭发动机   总被引:2,自引:0,他引:2  
液氧甲烷火箭发动机具有成本低、性能好、重复使用、维护方便等优点,是极具发展潜力的未来航天动力。北京航天动力研究所在十一五期间开展了60t级液氧甲烷火箭发动机原型样机研究。进行了甲烷液氧气液缩尺喷注器燃烧试验和甲烷液氧液液喷注器低混合比燃烧试验,了解了甲烷液氧的燃烧特性、点火特性等。开展了涡轮泵和阀门等组件适应性研究。研究表明,液氧甲烷发动机燃烧稳定性好,易于维护,是未来航天的理想动力选择之一。  相似文献   

15.
液氧/液甲烷推进剂组合具有高比冲性能以及其他优异的综合使用性能,已经成为未来空间化学推进的重要发展方向之一。点火技术作为液氧/液甲烷姿控发动机的重大关键技术,对发动机可靠启动、响应特性、脉冲一致性等关键指标具有重要影响。欧美国家已经开展系统以及相关组件的预先研究,其中美国已经完成了系统级的地面自由飞行试验。国内也已开展了低温推进系统技术论证,并开展了主发动机、姿控发动机以及点火器、低温贮箱、低温阀门等关键组件的研发。针对液氧/液甲烷低温推进剂组合进行了点火技术分析筛选和试验研究,验证了电火花点火与激光诱导等离子点火两种方案的原理可行性。试验表明在入口条件从气态到液态的宽广范围内两种方案均能实现可靠、可重复点火,两种点火方式对于LO_x/LCH_4发动机均原理可行。试验得出可靠点火的火花能量边界特性、混合比边界特性、响应特性以及脉冲特性,为后续液氧甲烷发动机设计提供依据。  相似文献   

16.
液氧/甲烷液体火箭发动机燃烧研究最新进展   总被引:1,自引:0,他引:1  
仲伟聪 《火箭推进》2004,30(1):52-57
近来,俄罗斯和欧洲正在联合进行一个名为“VOLGA“的研究计划.其主要目标是用于可重复使用运载火箭或大型助推器的液氧/甲烷发动机的概念研究.SNECMA的主要工作是研究预燃室/燃气发生器的可重复使用技术,在液氧/液氢“火神“燃气发生器研制过程中,获得了很多低温推进剂的燃烧经验,但液氧/甲烷富燃燃烧带来了许多新的问题:如喷注性能、燃烧效率、稳定性、积碳形成等.为了解决上述问题,目前正在进行实验和理论两方面的研究.ONERA的马斯喀特(Ma scotte)试验装置就被改造用于研究甲烷的燃烧.最初的研究完成了对低混合比和压力范围在0.1MPa到6.0MPa下的液甲烷和气甲烷同轴喷注技术的评估.各项研究在继续进行,以求对液氧/甲烷低温燃烧问题进行完整的描述和理解.除了上述研究外,还在进行计算流体力学数值模拟工具的更新工作,但是只有一些非常特殊的工况点才需要进行修改工作,这是因为过去的火箭发动机燃烧研究工作已经对液氧/液氢低温燃烧特性有了深入的理解,有很多研究成果可用于液氧/甲烷燃烧研究.目前的主要问题集中在甲烷的高频燃烧稳定性和燃烧化学效应方面.在一个称为INCA的新的燃烧研究计划框架内将对这些问题进行研究.  相似文献   

17.
在我国的载人登月技术方案中,为实现软着陆,登月舱需要一种大推力、高性能、多次起动,能够大范围变推力的泵压式发动机.通过研究国外登月用下降级发动机技术发展现状和趋势,基于我国氢氧发动机和低温推进剂空间贮存水平,进行了深度变推发动机的系统方案研究;通过分析比对燃气发生器循环和膨胀循环系统优缺点,确定发动机系统方案为涡轮串联闭式膨胀循环;采用空间可长时间贮存的液氧/甲烷推进剂组合,可满足任务周期要求;根据推力深度调节时对各组合件性能要求,确定喷注器燃烧稳定技术和燃烧室身部传热技术是深度变推发动机研制的核心关键技术.  相似文献   

18.
液氧/甲烷发动机的应用前景   总被引:5,自引:0,他引:5  
通过对甲烷与煤油以及液氧/煤油发动机与液氧/甲烷发动机性能的对比,分析了甲烷的优点。重点介绍了美国、俄罗斯、欧洲、日本、韩国等国家液氧/甲烷发动机研究的现状。综合考虑各种因素,液氧/甲烷发动机是一种具有广泛应用前景的新型发动机,可用于载人亚轨道飞行、高性能飞机、探空火箭、运载火箭上面级、纳米卫星运载火箭第一级。  相似文献   

19.
双喷管发动机象双喉部、双膨胀发动机一样,在先进的天地运输系统中得到验证。改进的航天飞机和全新火箭亦得益于这些先进的发动机。本文将对单燃料、双燃料以及双喷管发动机在设计方面所取得的进展作一总结。双喷管发动机的推进剂为:液氧/煤油/液氢、液氧/液丙烷/液氢、液氧/液甲烷/液氢、液氧/液氢/液氢、液氧/液甲烷/液甲烷、液氧/液丙烷/丙烷以及四氧化二氮/一甲基肼/液氢,发动机推力为889.6~2980.3kN。  相似文献   

20.
液氧/液甲烷以其高性能、无毒、易于轨姿控一体化、行星表面资源原位利用等优势已成为国际化学空间推进的主流发展方向之一,对国内外低温液氧甲烷化学空间推进发展和3 000 N液氧甲烷发动机的方案设计和试验研究进行了介绍。方案主要包括总体结构方案,喷注方案、冷却方案、点火方案和燃烧稳定性分析。3 000 N发动机于2017年3月进行了点火热试车,发动机点火全部取得成功,并进行了5 s和10 s稳态试验。燃烧效率约0. 95,推算推力大于2 860 N,地面比冲大于242 s,与设计指标基本相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号