首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
紫外CCD敏感器头部电路系统的研究   总被引:3,自引:0,他引:3  
介绍了我国探月工程之嫦娥一号卫星的紫外CCD敏感器系统的CCD电路的软硬件的开发研究.紫外CCD敏感器由光学结构、CCD及处理线路、数据处理单元及其软件组成.入射光经光学系统后,照射在CCD敏感元件,经视频处理电路处理后形成数字图像信号.数字图像信号保存在数据存储器中,由数据处理器进行分析处理.计算得到月球的中心并转换为探测器对月姿态角,其中紫外CCD敏感器头部电路包括CCD电路、时序电路、驱动电路、视频处理电路和电源电路.核心器件CCD采用E2V公司的CCD48-20芯片,文中重点介绍该CCD的时序、驱动和Smear等难点问题.   相似文献   

2.
卫星帆板转动和自身颤动会导致太阳X射线-极紫外射线(X-EUV)成像望远镜的成像质量下降.用移动补偿系统控制相机的CCD驱动器,使势阱转移到相邻相的位置上,转移的方向正好与图像在传感器上移动方向一致,使得图像的每个光子在移动后仍然落入传感器的同一个势阱内,补偿由于帆板移动造成的图像偏移.CCD相移沿列的方向进行,而CCD的列平行于东西向.高精度太阳敏感器使用两轴直角坐标来定位太阳的位置.移动补偿系统只使用其中一个轴向数据,由于南北指向误差远远小于东西指向,因此不对南北指向补偿.该移动补偿系统利用高精度太阳敏感器构成半闭环控制系统,通过偏移CCD势阱来实现一个方向上的移动补偿.该方案可以在不增加成本的前提下,消除长时间曝光过程中的太阳的平移和帆板颤动对图像质量造成的影响,扩大动态观测范围.   相似文献   

3.
太阳帆板振动对星载CCD相机成像的影响   总被引:2,自引:0,他引:2  
由Hamilton原理建立了带有大型拓性太阳帆板的卫星的数学模型;还建立了卫星姿态运动、轨道运动、地球自转、地球曲率、高斯投影等影响下的星载线阵CCD成像模型。利用以上模型和数字计算机仿真技术,仿真分析了太阳帆板的弹性振动和卫星姿态的相互影响对图像质量的影响。  相似文献   

4.
CCD光学遥感器参数选择研究   总被引:2,自引:0,他引:2  
金光  钟兴 《空间科学学报》2009,29(1):135-139
介绍了由衍射受限非相干成像系统的衍射分辨率引出的截止频率及混叠的概念. 为了对采样成像系统获得的图像质量进行量化, 使用图像质量因子(λF/P)表示探测器对光学系统线扩散函数采样的程度. 进一步分析了光学遥感器参数选择与信噪比的关系. 选择实际的焦距9 m, F 数为18 的空间光学系统, 利用ZEMAX 软件的像模拟功能, 对选择8.75 μm 和13 μm 像元尺寸的CCD 所获得的图像进行了模拟仿真. 仿真获得的结果验证了图像质量因子和信噪比对图像分辨率的影响.   相似文献   

5.
对同步轨道自旋稳定卫星提出了一种 32列圆柱阵的电子消旋天线。该天线每列有 4个辐射单元 ,通过开关矩阵和数字可变功分器 ,对相邻五列阵顺序馈电形成覆球波束 ,在 0°~ 360°范围内周向扫描。利用星载地球敏感器输出脉冲作为角度参考 ,通过控制软件实现自主消旋 ,并获得了周向约 1 6°的波束跃度和电平起伏小于 1dB的平稳消旋结果  相似文献   

6.
The Stratospheric Wind Interferometer For Transport studies (SWIFT) is an instrument intended to measure winds to an accuracy of 5 m s−1 or better in the stratosphere, during both day and night, as well as ozone concentrations. It is based on WINDII, the WIND Imaging Interferometer on the UARS satellite, but there are a number of important differences. WINDII operated in the visible region, with widely-spaced airglow emission lines, a field-widened Michelson interferometer that uses glass combinations to provide thermal stability, and a CCD detector. SWIFT uses the thermal emission from an ozone line near 8.9 μm, a region in which the choice of refractive materials is very limited. Through a careful search for a suitable line several were found of appropriate strength that were adequately isolated, but only with a combination of etalon filters. Fortunately, HgCdTe array detectors are available so the detector is not a problem. By measuring both winds and ozone concentration it is possible to measure ozone fluxes. SWIFT will study ozone transport, transport across the sub-tropical mixing barrier, equatorial dynamics and data assimilation. The latter is an important tool for the execution of the scientific objectives.  相似文献   

7.
The large elongated orbit planned for NOZOMI around Mars, i.e. a periapsis of 150 km and an apoapsis of 15 RM (RM denotes the radius of Mars), will provide many occasions for encounters of NOZOMI with two Martian satellites, Phobos and Deimos, where NOZOMI is the former Planet-B meaning “Hope” in Japanese. We present a plan for imaging the two satellites by the Mars Imaging Camera (MIC) on board NOZOMI at such encounters during the mission lifetime of two years from October 1999. An Autonomous Tracking Mode is available for fly-by imaging of satellites. MIC scans the azimuth direction (orthogonal to the CCD line arrays) using the spacecraft spin at a rotation rate of 7.5 rpm, and has an image resolution of 80 arc second in both elevation and azimuth directions.The main science objectives of MIC, related to the two satellites, are (i) to study the size/spatial distributions of craters on both satellites, (ii) to examine the groove structure on Phobos, (iii) to image areas not yet seen areas of Deimos, and (iv) to derive its whole shape. We will, furthermore, search for the dust rings along the orbits of these two satellites in the forward scattering region of sunlight. The capability of MIC to execute these objectives are briefly summarized.  相似文献   

8.
    
为实现有效载荷具备上载软件在轨定义多功能、软件可控多功能、参数可重构的软件定义微纳卫星需求,需要突破传统卫星平台和传统光学相机的设计局限,开展基于微纳卫星的软件定义下新型计算光学成像载荷技术研究。充分考虑有效载荷的软件和硬件两者之间联合设计可能存在的发展空间,分析了亚像元信息、卫星平台参数、光学系统参数、探测器参数、噪声、大气对图像数据处理,特别是超分辨率重建的影响。根据各个影响因素的物理机制分别建立物理模型和误差模型,作为重建方法的先验信息,将这些有利于超分辨技术的先验信息约束应用于相机设计过程,使得相机获取的图像可以很好地匹配超分辨方法。该方法可以提升视觉分辨率和实质分辨率,同时保持对噪声的抑制能力,并有可能降低传统相机的结构尺寸和研制难度。研制实现集超分辨成像、动态范围增强成像、视频成像等软件智能可控的多种成像处理模式于一体的通用型计算光学成像相机,将对航天产业提供更大的灵活性和增值空间,为未来智能卫星航天技术研究与快速创新提供一种可行的方案。  相似文献   

9.
通过分析卫星轨道末期星载TDI CCD相机成像面临的数据读出频率过大、像移失配严重等瓶颈问题, 提出了轨道末期卫星侧摆成像匹配方案. 依据轨道衰减高度, 设计侧摆成像匹配模型, 计算出轨道高度与匹配成像侧摆角度之间的变化关系, 对侧摆成像时的像移速度矢量、偏流角度、成像畸变等进行了定量的可行性分析, 并利用蒙特卡洛方法分析了满足侧摆成像的卫星姿态指向精度和稳定度. 利用基于小型三轴气浮台的小卫星姿态控制系统和TDI CCD相机成像系统进行仿真试验, 结果表明, 仿真图像的MTF函数和互相关相似性测度均在0.85以上, 侧摆成像匹配方案能较好地满足轨道末期成像需求.   相似文献   

10.
The first Korean multi-mission geostationary satellite, Communication, Ocean, and Meteorological Satellite (COMS) will be launched in 2010. The missions of this satellite will be Ka-band communications, ocean color monitoring, and meteorological imaging. The satellite was designed with only one solar array on the south panel. This novel configuration will keep imaging instruments on the north side from heating up. Asymmetry of the spacecraft configuration requires twice-a-day thruster-based Wheel Off-Loading (WOL) operations to keep the satellite attitude for imaging and communication. Thruster firings during the WOL operations cause the satellite orbit to change two times a day. Weekly East–West Station-Keeping (EWSK) and North–South Station-Keeping (NSSK) maneuver operations are planned for the COMS satellite in order to maintain the satellite in ±0.05° box at 128.2°E longitude.  相似文献   

11.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   

12.
Studies to characterize optical and biological properties of land cover as observed from space are planned using a six channel, imaging spectroradiometer employing newly developed multispectral linear array (MLA) detector technology. These studies are to take place by mounting the radiometer on the Shuttle and observing areas with dynamic and diverse types of land cover condition. The radiometer will have 15 meter spatial resolution for four, 20 nanometer bands in the visible and near infrared and 30 meter resolution for similarily narrow bands in the shortwave infrared bands. The instrument will scan ± 45 degrees along the Shuttle orbital path. The principle objective of this experiment is to obtain observations that augment knowledge of the distribution of basic land cover types in regions that are known to be key to questions of biogeochemical cycles, energy balance and climatic change. Another key objective is to quantify the bidirectional reflectance of key land cover conditions in major portions of the visible, near infrared and shortwave infrared as they are observed from space. The initial execution of this experiment is presently scheduled for late 1987.  相似文献   

13.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   

14.
The Tracking Ultraviolet Set Up (TUS) instrument has been designed to observe from space the fluorescence light in the atmosphere when Extensive Air Shower (EAS) or other phenomena such as meteors or dust grains traverse it. The TUS design concepts will allow us to construct the next generation of fluorescence detectors with increasing light collection power and higher resolution. The KLYPVE instrument with collection power 5 times larger of the TUS will be the next space detector. Light collection is obtained with the help of segmented “low frequency Fresnel type” mirrors. Photo receiver retina in the focal consists of modules of PM tubes. For stable performance in conditions of variable light noise and variable temperature the tube type with a multi-alcali cathode was chosen. Voltage supplies for PMT in one module were designed for keeping the performance of photo receiver retina uniform when the tube gain change. From every tube the signal amplitude is recorded in time bins of 400 ns. The digital data are kept and analyzed in the module FPGA connected to the central FPGA controlling all data. The RAM memory is large, capable to record events with different duration of the light signal (up to several seconds). The preliminary event data are analyzed in the triggering system of the central FPGA. The trigger criteria have several options for events of different origin (different pixel signal duration). The trigger integration time is controlled from the space mission center. The performances of the detector were simulated and zenith angle dependent trigger efficiencies were calculated. The TUS detector will be efficient in recording “horizontal” EAS (zenith angles more than 60°), developed to their maximum above the cloud cover. The EAS Cherenkov light, back scattered from the cloud cover, will be recorded and will improve data on the EAS direction and position of maximum. For better accuracy in physical parameters of the events and for the experimental check of this accuracy the performance of two TUS detectors at the space platform was recommended. The accommodation of 2 TUS detectors at space platform of the “RESURS O” type was tried and approved. The TUS prototypes are being tested in the Mexican mountains. The photo receiver of two PM tubes with the TUS electronics on-board of the MSU Tatiana satellite is measuring the atmosphere light background.  相似文献   

15.
For the distant giant planets, Uranus and Neptune, the observation of aurorae may be the best astronomical technique for the detection of planetary magnetic fields, with implications for the structure and composition of their interiors. Aurorae may be detected by emssion of H I Ly α (1216 Å) and by H2 bands near 1600 Å. The latter are important for very faint aurorae because there is essentially no planetary, interplanetary or geocoronal scattering of sunlight to contaminate the signal. For Uranus, present IUE results suggest the presence of a strong aurora at Ly α, but the background and instrument noise levels are very high compared to the apparent signal. At 1600 Å, the IUE instrument noise renders the H2 emission bands on Uranus marginal at best. No aurora has yet been observed on Neptune. For Jupiter, where the existence and general characteristics of the magnetic field are well established, there is disagreement between ground-based infrared and space-borne ultraviolet observations of the location of the aurorae. For all four giant planets, Space Telescope can improve upon the quality of current optical observations. For spectroscopy, the low resolution mode of the High Resolution Spectrograph (HRS) is particularly well suited to auroral observations because of its spectral range, adequate resolution and high sensitivity. For ultraviolet imaging through appropriate filters, the ST spatial resolution, expected to be of order 5 hundredths of an arc second, is also well suited to determine the spatial properties of the aurorae.  相似文献   

16.
以VC++ 6.0为开发环境, 基于航天TDI (Time Delay and Integration) CCD相机地物点与像点的映射模型, 开发了TDI CCD相机成像仿真软件系统, 建立了由卫星单轴气浮姿态控制仿真台和地面星载TDI CCD相机成像仿真软件系统构成的实时航天TDI CCD相机成像仿真平台, 可动态模拟航天TDI CCD相机在进行标称偏流角调节后卫星姿态角速度误差对航天TDI CCD相机成像的影响, 仿真结果与实际成像结果基本一致.   相似文献   

17.
推导了卫星锐波束天线指向算法,给出了简化计算模型和仿真结果。文章所给出的天线指向算法是在已知卫星轨道和姿态的基础上,计算锐波束天线指向点二维转动角度的公式,实现卫星动态过程对指向点的保持;通过仿真给出指向点精度和姿态精度的关系,给出自主生成控制函数的简化模型,同时也验证了该算法的正确性,算法可作为星上自主计算的依据。  相似文献   

18.
空间目标的逆合成孔径雷达(ISAR)成像由于受自身遮挡及噪声干扰等影响,导致生成的ISAR像难以直接进行图像分析及目标识别。由此,以空间目标的ISAR成像建模为基础对ISAR像处理及特征提取展开了研究。首先,分别建立了目标卫星的ISAR成像模型、ISAR信号模型及ISAR图像函数提取模型,并经过旁瓣抑制与相干斑滤波等初步处理得到了目标卫星的ISAR像。其次,采用Otsu算法、canny算子及Hough变换使卫星旋转至最长轴平行于像平面横轴,通过闭运算填充卫星内部孔洞,去除外部孤立噪声,并基于连通域思想分割出卫星所在子区域,实现了卫星的轮廓提取。所设计的图像处理算法能有效改善ISAR像质量,提取的卫星轮廓线能较好地勾勒出目标卫星的外形结构,为进一步展开卫星的识别工作奠定了重要基础。   相似文献   

19.
针对空间低照度成像条件下卫星光学图像信息受损严重的问题,提出了一种基于生成对抗网络的空间卫星低照度图像增强方法,提高了图像的平均亮度及对比度,恢复图像细节信息,为图像识别等图像处理技术提供更高质量的数据信息.首先,设计了一种密集连接的生成器,加强了各特征提取阶段中的信息传递以及多层特征的融合,减少了特征信息的损耗,更好...  相似文献   

20.
资源卫星CCD多光谱扫描仪系统的像质评价   总被引:2,自引:0,他引:2  
综述了资源卫星CCD多光谱扫描仪系统像质评价的重要性。内容和影响像质的主要因素;还综述了SPOT和TM使用的评价准则、评价方法以及卫星发射前的图像质量预估和在卫星发射后的像质评估结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号