首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We present an analysis of five microflares, three observed simultaneously by RHESSI in hard X-rays and Nobeyama RadioHeliograph (NoRH) in microwaves (17 GHz) and two observed by RHESSI and Nancay RadioHeliograph (NRH) at metric wavelengths (150–450 MHz). Since we have no radio imaging telescopes simultaneously operating at microwave and meter wavelengths in the same time zone, we are obliged to use a different set of metric events in contrast to that used for comparison with the two radio wavelengths. We are interested in using the locations and other imaging characteristics of the events from both RHESSI and radio observations instead of just temporal correlation. So we have used the Nancay (France) metric radioheliograph at 150–450 MHz for this purpose. Here we describe the properties of five events – three in microwaves and two at metric wavelengths. We discuss the brightness temperatures, emission measures and the hard X-ray spectral properties of these microevents. One sees small (mini) flaring loops clearly in NoRH and RHESSI images. The microwave emission often seems to come from the RHESSI foot points (for higher energies), and from the entire small (mini) flaring loop (for lower energies).The RHESSI microflares seem to be associated in position with metric type III bursts. Frequently, the hard X-ray spectrum of the microwave associated RHESSI microflares can be fit by a thermal component at low energies (∼3–12 keV) and a nonthermal component at higher energies (∼12–20 keV).  相似文献   

2.
Observation of two flares obtained with the Solar Maximum Mission spectrometers indicate that at flare onset the emission in soft (3.5 – 8 keV) and hard (16 – 30 keV) X-rays is predominant at the footpoints of the flaring loops. Since, at the same time, blue-shifts are observed in the soft X-ray spectra from the plasma at temperature of 107 K, we infer that material is injected at high velocity into the coronal loops from the footpoints. These areas are also the sites of energy deposition, since their emission in hard X-rays is due to non-thermal electrons penetrating in the denser atmosphere. Hence, chromospheric evaporation occurs where energy is deposited. During the impulsive phase, the configuration of the flare region changes indicating that the flaring loop is progressively filled by hot plasma.  相似文献   

3.
Radio emissions during and outside solar flares are tracers of energetic electrons from the bottom of the corona to the interplanetary space. This review focusses on impulsive flares, where joint analyses of radio, hard X-ray and γ-ray observations proved to be powerful probes of the properties of accelerated electrons and of the sites in the corona where they are accelerated. Evidence of electron acceleration and transport in the corona from microwave imaging and decimetre wave spectroscopy is reviewed and compared, and recent work on the interpretation of microwave spectra in terms of energetic electron spectra is discussed. The two directions for future instrumentation are the extension to shorter wavelengths, with the aim of probing relativistic electrons, and solar dedicated spectral imaging from centimetric to metric waves to provide a unified view of the acceleration signatures that stem so far from different instruments with either spectroscopic or imaging capabilities.  相似文献   

4.
First recognized by Wu and Lee (Ap. J. 230, 621, 1979), electron-cyclotron masers can be activated under very mild conditions. Large growth rates can occur even for relatively mild anisotropies in the electron velocity distribution, e.g., the one-sided loss cones that commonly occur when electrons with small pitch angles precipitate into high density regions at the footpoints of flaring loops while others are reflected in the converging field in the corona. Maser action can plausibly occur at the second harmonic of the local gyrofrequency and so explain certain very bright (? 1010 K) microwave bursts from the sun and other stars. However, the preponderance of the energy is at the first harmonic.We suggest that masers operating at the local gyrofrequency in a flaring loop generate radiation at decimeter wavelengths that is a significant fraction of the total energy of the flare, in fact (and not coincidentally) comparable with the energy in electrons associated with hard X-ray bursts. Essentially all of the radio energy is trapped in the corona and serves to produce localized heating in a volume large compared with the energy release region. Thus it can transfer energy by radiation from one magnetic loop to another, possibly inducing further instabilities, and spreading the course of the flare. Eventually the energy probably escapes the corona as soft X-rays. The electron-cyclotron maser saturates by extracting the perpendicular energy of the electrons, thereby diffusing them into the loss cone at the maximum possible rate; the enhanced precipitation into the footpoints can produce bright emission in hard X-rays, EUV and Hα and remove any necessity for directive acceleration in the energy release region.Details of the proposed mechanism and effects are contained in two papers by Melrose and Dulk (Ap. J. 259, 1982).This work was sponsored by NASA under grants NAGW-91 and NSG-7287 to the University of Colorado.  相似文献   

5.
We have studied soft and hard X-ray images of 13 solar flares from six active regions observed by the Hard X-ray Imaging Spectrometer (HXIS). Our results indicate the presence of pre-hard X-ray burst excesses in the 11.5–30.0 keV range, indicating a slow buildup of the acceleration process or a strong preheating. During the impulsive phase, all of the events show the simultaneous energization of neighboring field structures, which, in the case we show in some detail, share about equal amounts of the released energy. This association seems to be indicative of strong acceleration and energy release triggered by the interaction between magnetic loops.  相似文献   

6.
Four multi-loops or arcade flares showing strong impulsive soft X-ray brightenings on Yohkoh/SXT frames have been selected. By inspection of light curves of individual pixels, the areas of brightening have been localised. Evidences that non-thermal electron beams easily penetrate through whole flaring structures have been found. In some footpoints of the flaring structures during the impulsive phase the evidence of the chromospheric evaporation driven by non-thermal electron beams has been detected. The velocities of the upflowing plasma have been estimated. Derived values are in a wide range among 220 and 750 km/s. The SXT images of the investigated flares have been compared with the Yohkoh/HXT images. Generally good spatial and temporal coincidence between soft and hard X-ray emission from footpoints of flaring structures during the impulsive phase have been found but some exceptions occur. An explanation of the reported exceptions based on the magnetic field configuration has been proposed.  相似文献   

7.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

8.
We present observations of a C9.4 flare on 2002 June 2 in EUV (TRACE) and X-rays (RHESSI). The multiwavelength data reveal: (1) the involvement of a quadrupole magnetic configuration; (2) loop expansion and ribbon motion in the pre-impulsive phase; (3) gradual formation of a new compact loop with a long cusp at the top during the impulsive phase of the flare; (4) appearance of a large, twisted loop above the cusp expanding outward immediately after the hard X-ray peak; and (5) X-ray emission observed only from the new compact loop and the cusp. In particular, the gradual formation of an EUV cusp feature is very clear. The observations also reveal the timing of the cusp formation and particle acceleration: most of the impulsive hard X-rays (>25 keV) were emitted before the cusp was seen. This suggests that fast reconnection occurred during the restructuring of the magnetic configuration, resulting in more efficient particle acceleration, while the reconnection slowed after the cusp was completely formed and the magnetic geometry was stabilized. This observation is consistent with the observations obtained with Yohkoh/Soft X-ray Telescope (SXT) that soft X-ray cusp structures only appear after the major impulsive energy release in solar flares. These observations have important implications for the modeling of magnetic reconnection and particle acceleration.  相似文献   

9.
We present observations of flaring active regions with the Very Large Array (V.L.A. at 6 cm and 20 cm wavelengths) and the Westerbork Synthesis Radio Telescope (W.S.R.T. at 6 cm wavelength). These are compared with photospheric magnetograms (Meudon) and with Hα and offband Hα photographs (Big Bear and Ottawa River Solar Observatories). The 6 cm radiation of these active regions marks the legs of dipolar loops which have their footpoints in lower-lying sunspots. The intense, million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength H? = 600 Gauss and the height above the sunspot umbrae h = 3.5±0.5 × 109 cm. Circularly polarized horseshoe structures at 6 cm ring the sunspot umbrae. The high degree of circular polarization (?c = 95%) of the horseshoes is attributed to gyroresonant emission above sunspot? penumbrae. The 20 cm radiation of these active regions exhibits looplike coronal structures which extend across regions of opposite magnetic polarity in the underlying photosphere. The 20 cm loops are the radio wavelength counterparts of the X-ray coronal loops. We infer semilengths L = 5 × 109 cm, maximum electron temperatures Te(max) = 3 × 106 K, emission measures ∫Ne2dl = 1028 cm?5, and electron densities Ne = 109 cm?3 (or pressures p = 1 dyn cm?2) for the 20 cm bremsstrahlung. A total of eight solar bursts were observed at 6 cm or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 × 108 K, and degrees of circular polarization between 10% and 90%. The impulsive phase of the radio bursts are located near the magnetic neutral lines of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. In one case there was preburst heating in the coronal loop in which a burst occurred. Snapshot maps at 10 s intervals reveal interesting burst evolution including rapid changes of circular polarization and an impulsive burst which was physically separated from both the preburst radio emission and the gradual decay phase of the burst.  相似文献   

10.
The Hard X-ray Spectrometer aboard the SMM detected several events of energy release late in the development of two-ribbon flares. One such event, at 21:12 UT on 21 May, 1980 (~ 20 min after the flare onset and 15 min after the peak of the impulsive phase) is studied in detail. The site of new brightening first became visible in hard X-rays (> 22 keV) and only afterwards showed up at lower energies. It was clearly located high in the corona so that one can identify it with energy release at the tops of newly formed post-flare loops. Thus, if the Kopp and Pneuman model of the loop formation is adopted, we may have imaged here a reconnection process in the solar corona. An attempt is made to estimate physical parameters at the reconnection site.  相似文献   

11.
We review the recent advances in the field of energy transfer and dissipation in solar flares. New observations and theoretical results have been obtained during the SMY and discussed in several workshops. Important new results have been provided by imaging hard X-ray and radio observations, high resolution spectra in the soft X-ray range, polarization measurements and combined optical, gamma- and X-ray data. We summarize results on the following topics: a) interpretation of hard X-ray bursts; b) heating and cooling of X-ray flare plasmas; c) chromospheric heating and evaporation; d) white-light flares. An overall picture of the importance of transfer processes is given, together with prospects for development of future research topics.  相似文献   

12.
We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities.  相似文献   

13.
Simultaneous microwave and hard X-ray imaging observations of 12 bursts show that it is difficult to discern a general pattern between microwave and hard X-ray burst locations. In general, the microwave source is displaced from the hard X-ray source. The commonly believed behavior of the microwave source being located near the top and hard X-ray source near the footpoints of a loop appears to be true in some cases but not all. If the burst source is simple, both may be located near loop tops. Sometimes when the hard X-ray source has two components, one weak and one strong, the microwave source is not located over a neutral line (loop top) but close to a sunspot where the magnetic field is strongest. It appears that more than one loop or arcade may sometimes be involved in the microwave and hard X-ray emission. This is particularly true when several interacting loops trigger the onset of a flare.  相似文献   

14.
Simultaneous observations of a microwave burst at 2 and 6 cm wavelengths were carried out with the Very Large Array (VLA). The 6 cm burst source is located close to a magnetic neutral line, presumably near the top of a flaring loop, while the 2 cm emission originates from the footpoints of the loop. It is concluded that the 6 cm emission is dominated by gyrosynchrotron radiation of the thermal electrons in the bulk heated plasma at a temperature of ~ 4 × 107 K, while the 2 cm emission is due to nonthermal particles released and accelerated during the flare process. From the observed low degree of polarization and the lack of the 2 cm source cospatiality with the 6 cm source a magnetic field of 200–350 G and δ ? 4 are estimated in the flare energy release site. A DC electric field flare model is invoked to explain the long delay between the peaks at the two wavelengths. From the delay, the strength of the electric field is estimated to be 0.2–4 μ statvolt cm?1 in the flaring region.  相似文献   

15.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

16.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

17.
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed.  相似文献   

18.
The comparative study of radiation in the different spectral ranges, including X-ray and radio observations, can establish constraints for the electron acceleration/injection mechanisms. This paper will focus on the activity prior and during the impulsive phase of solar flares. Observations give evidence for electron acceleration prior the impulsive phase. The association between type III groups and hard X-ray bursts becomes closer with increasing starting frequency of the former observed during the impulsive phase. It is shown that pure type III burst groups, when they are X-ray associated, do not correspond to an intense X-ray emission. At the opposite, the type III/V events can be associated with strong X-ray emission. Radioheliograph observations bring constraints on the geometry of the injection/acceleration site.  相似文献   

19.
High temperature phenomena occurring in solar flares are reviewed based on hard X-ray images and spectral analyses of highly ionized iron lines observed aboard the Hinotori spacecraft.Five basic flare components are proposed, i.e., impulsive (I), gradual hard (GH), thermal (T), quasi thermal (QT) and hot thermal (HT) components. A flare shows some combination of the five components. Energy release and transport for each component would give a lot of variety to the hard X-ray image, spectrum and time history of X-rays.  相似文献   

20.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号