首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E ≥ 10MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E ≥ 10MeV质子的强度只与相关太阳耀斑和CME有关.   相似文献   

2.
采用小波分析方法讨论了2008—2011年ACE和STEREO-B卫星太阳风速度的27天周期特性,运用一元线性回归分析方法计算了两颗卫星太阳风速度的线性表达式,分析和计算结果表明,ACE和STEREO-B卫星探测到的太阳风速均在8~16d,16~32d的频域尺度上较为显著,在局部相同时域上,二者太阳风速的27天周期均较为显著;当太阳活动为低年时,相关性好. 作为应用实例,使用STEREO-B卫星太阳风探测数据,预测2012年10月1—17日的ACE太阳风速度,结果表明,预测值与实测值趋势一致,CME过程对预测值有一定影响. 通过本项研究,初步统计出了ACE与STEREO-B太阳风速度的关系,利用STEREO-B能够提前数天监测到即将由太阳吹向地球的太阳风特性,为建立直观的重现型地磁暴中期预报模型奠定了基础.   相似文献   

3.
<正> 地球观测卫星利用星上遥感设备对地球进行观测,以获取各种地面信息.这种卫星通常选取太阳同步兼回归轨道.在太阳同步轨道上,运动的卫星在相同的地方时经过观测区域,卫星摄影时,太阳高度角基本相同;选取回归轨道,其目的是使卫星在运行一个回归周期以后,又重复原先的地面轨迹,这就可以满足用户对同一目标多次重复观测的要求.美国陆地卫星、泰罗斯、依托斯、雨云及法国的地球资源卫星均设计为这样的轨道.  相似文献   

4.
根据2007-2009年STEREO-BEHIND (STB)和ACE卫星的行星际磁场和太阳风数据, 基于冕洞高速流从太阳向外匀速径向传输假设, 讨论了随着STB和ACE卫星与太阳之间的夹角从0°增大至70°时, 冕洞发出的高速太阳风形成的相互作用区(CIR)依次扫过STB和ACE卫星的时间差特性, 并统计分析了两颗卫星观测到的CIR参数的变化特征. 结果显示, 可以利用STB对CIR事件的观测来预测这个CIR事件到达ACE的理论时间, 时间误差均值和最大值分别为0.217d和0.952d, 时间误差的产生与STB和ACE卫星观测到的CIR速度大小的不同有关, 用速度差异矫正后, 时间误差的平均值和最大值可分别减小为0.194d 和0.489d; STB和ACE卫星观测的CIR事件太阳风速度最大值的线性相关系数达到了0.84, STB和ACE卫星观测到的CIR事件对特征物理量中速度、质子温度的变化最小, 而质子密度及总压力的变化最大. 分析结果表明, STB和ACE卫星观测到的CIR事件有很强的相似性, STB卫星的CIR观测可以作为ACE卫星观测CIR事件特征的参考, 从而为地球空间环境扰动预报提供依据.   相似文献   

5.
一种卫星天文自主定轨定姿方法研究   总被引:2,自引:2,他引:2  
利用安装在卫星上的太阳敏感器和紫外敏感器测量出的卫星—太阳、卫星—地球和卫星一月球方向矢量,并利用雷达测高仪测出的地心距作为观测量,提出采用广义卡尔曼滤波方法实时地确定卫星绕地球飞行的轨道,同时确定出卫星的对地姿态.对自主定轨进行了数学仿真,分析比较了采样周期、轨道倾角、轨道偏心率和轨道高度等因素对定轨精度的影响.总结了其变化规律,该方法可用于提高卫星自主定轨精度.  相似文献   

6.
太阳质子事件与太阳耀斑的关系   总被引:2,自引:2,他引:0       下载免费PDF全文
通过对0°W-39°W,40°W-70°W,71°W-90°W经度范围内太阳质子事件与太阳耀斑的相关性计算分析,发现太阳质子事件与太阳耀斑的相关系数依赖于经度.太阳耀斑积分与地球磁链接区域(40°W-70°W)太阳质子事件强度的相关系数最大.相关系数的这种特点与耀斑加速粒子的最大流量只出现在磁链接区域的特征相吻合.计算结果表明,太阳耀斑对太阳质子事件具有贡献,即耀斑对E ≥ 10MeV的质子加速有贡献.耀斑和CME在磁链接区域对太阳质子事件的贡献相同,这说明太阳质子事件是混合型事件.   相似文献   

7.
日冕物质抛射(CME)是太阳质子事件的重要源头.CME的速度和源区位置是太阳质子事件产生的重要因素.通过统计最近5年全晕CME与太阳质子事件的关系发现,速度大且源区位置距离日面上连接地球磁力线足点近的全晕CME更易引发太阳质子事件,其中速度大于1200km…-1、角距离60°以内的样本引发太阳质子事件的概率最高.对3个未引发太阳质子事件的高速全晕CME进行了详细分析,发现CME的主体爆发方向和行星际磁场环境的变化也影响太阳质子事件的产生.因此,在太阳质子事件的实际预报中,综合CME爆发速度、源区位置、主体抛射方向和行星际环境等多个因素才能给出更准确的事件预报结果.   相似文献   

8.
<正>2016年12月22日3时22分,中国在酒泉卫星发射中心用长征二号丁运载火箭成功将全球二氧化碳监测科学实验卫星(简称"碳卫星")发射升空,它将从太空监测全球各国二氧化碳排放,为中国节能减排等宏观决策提供数据支撑。这一卫星的成功发射使中国继日本和美国后,成为世界上第三个能从太空监测温室气体排放的国家。在未来3年中,这颗620千克重的碳卫星将在700千米太阳同步轨道上,每16天对地球进行一次全面"体检",最终形成  相似文献   

9.
太阳敏感器作为检测太阳矢量方位角的一种光学仪器,是卫星进行姿态测量、确定和控制的重要敏感器.随着天基对日观测活动的发展,对日精确指向需求强烈,太阳敏感器的精度和数据更新率成为制约对日观测平台稳态控制和精确观测的关键因素.针对太阳敏感器高精度和高更新率的需求,从光学系统、电路系统和软件算法等多个角度出发,设计了一种太阳敏感器,经标定测试,精度随机误差达到0.716″(3σ),更新率达到62 Hz.  相似文献   

10.
2014年由两个具有0.5m×0.5m闪烁体面积的探测器组成的宇宙线μ子望远镜在南极中山站建成,观测数据通过卫星链路传回并发布.通过对中山站μ子望远镜数据的气象效应分析,发现中山站的气压变化对宇宙线计数率影响显著并呈负相关.计算得到宇宙线高能质子在中山站的垂直截止刚度RC为0.076GV,对比中国西藏羊八井和北京高能质子的垂直截止刚度,中山站非常有利于对太阳高能质子事件的观测.   相似文献   

11.
The Japanese X-ray astronomy satellite Hakucho and Tenma observed the activity of the rapid burster MXB 1730-335 in 1979 and 1983. In the first observation from 8 to 22 August 1979, the activity began with rapidly repetitive type II bursts which are similar to those observed earlier. Then the energy per burst quickly increased and evolved to exhibit a long flat top or roughly trapezoidal shape. In the last phase, burst size became smaller and the activity returned to the short type II burst mode. In the second observation from 5 to 31 August 1983, the burster started to emit a train of bursts which aparently resemble to type I bursts with quasi-periodical occurrence of 74 ~ 90 minutes. In the second phase, there appeared long type II bursts of trapezoidal profiles and exotic long bursts. In the last phase, about 3000 rapidly repetitive short type II bursts were observed. The bursts with shortest intervals exhibited almost periodic features of 16 sec.The type II bursts in both observation evolved to the size E of ~ 6 × 1040 erg that is one order larger than ever observed. They were long bursts (τ ≦ 600 s) of flat topped (trapezoidal) shape and those of exotic profiles. Those type II bursts exhibited some kinds of quasi-periodicities, which implies the vibrations or instabilities of the mass accretion onto the neutron stars. The type I bursts were often observed with/without type II bursts.  相似文献   

12.
Due to the lack of simultaneous high sensitivity/time resolution observations at mm- cm-λ and m-λ a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 MHz, however ii) start times at mm-λ and m-λ are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons.  相似文献   

13.
本文分析了北京天文台2840MHz射电望远镜,1989年1月-1993年12月期间观测到的太阳射电爆发的显着事件与米波Ⅱ型、Ⅳ型爆发的对应关系,从相关结果来看,爆发的峰值流量越高△T越短,这说明当太阳流量越大,高达500s.f.u.以上时,Ⅱ型爆发会在爆发的峰值前后很短时间内发生,可能与粒子的加速有关。   相似文献   

14.
本文根据1981年HALE 17590 太阳活动区的观测资料,着重分析了它的射电辐射特性后发现:(1)在光学活动区发展的上升阶段,每串射电爆发的强度也有由弱到强的变化,其频谱由单调谱变成不规则谱和U型谱;(2)对大的耀斑爆发而言,射电爆发的先兆相比X射线爆早。在射电先兆相期间常伴有谱斑增亮和暗条激活等现象;(3)大耀斑爆发的脉冲极大时刻在射电8毫米波段到来最早。   相似文献   

15.
本文分析了1979年1月一12月紫台3.2cm、10cm波段上的爆发资料,峰值流量增量ΔS/S≥50%的爆发共计25个,发现所有25个爆发的爆前记录曲线上都存在着周期从几秒一10几秒、振幅约为太阳非扰动分量l%的振荡。这种振荡一般先于爆发几小时或几天。但对于特大爆发,如47GB型爆发,在长时间持续振荡以后,往往在爆前几十分钟或几小时突归宁静,呈平滑记录;对于较小的爆发,脉冲爆或持续期较短的复杂爆,如3S型、20GRF型以及45C型,在振荡同爆发之间不存在记录曲线的宁静时段,而往往由振荡直接延续到爆发。因此微波辐射的这种振荡特性可能是耀斑区域储能过程的一种反映。   相似文献   

16.
A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities 1 g cm−3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r−2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of “hypernovae” may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the disk of material begins to form and makes a transition from a non-Keplerian to quasi-Keplerian flow in the collapsar and related models.  相似文献   

17.
The amount of data on gamma-ray bursts (GRBs) and the detected afterglows observed by the Swift satellite contributed significantly to the understanding of the phenomenon. The behavior of the early afterglow rises some interesting questions. With the early afterglow localizations of gamma-ray burst positions made by Swift, the clear delimitation of the prompt phase and the afterglow is not so obvious any more. There are hints of a canonical X-ray afterglow lightcurve with segments of different slopes. Not all bursts necessarily show all the segments. It is important to see if the prompt phase and the afterglow has the same origin or they stem from different parts of the progenitor system. We will combine the of gamma-ray burst data from BAT and XRT and compare the extrapolated gamma-ray flux to the X-ray in a sample of bursts and find that there is a good agreement between the two measurements. This indicates that the physical process shaping burst and the early afterglow are the same.  相似文献   

18.
Swift is a first-of-its-kind multiwavelength transient observatory for γ-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of γ-ray bursts and their afterglows, as well as for using bursts to probe the early Universe. Swift will also monitor the soft gamma repeaters and perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field γ-ray detector, will detect >100 γ-ray bursts per year with a sensitivity 5× that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location within 20–70 s to determine 0.3–5.0″ positions and perform optical, UV, and X-ray spectrophotometry. Strong education/public outreach and follow-up programs will help to engage the public and the astronomical community. Swift launch is planned for late 2004.  相似文献   

19.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

20.
用银河宇宙线判定几个引起特大磁暴CME的运动方向   总被引:1,自引:0,他引:1  
利用位于南北极尖区位置的McMurdo和Thule台站的宇宙线强度的观测数据,分析了几个引起特大磁暴CME的来向.分析结果表明,所选的与4个特大磁暴相关的CME基本是朝正对磁层顶的方向运动并与磁层作用的.通过对引起第23周两个特大磁暴的CME特征分析对照,发现CME的来向是影响磁暴强弱的一个因素.同样条件下,运动方向偏向地球一侧的CME引起的磁暴比正对地球的CME引起的磁暴要弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号