共查询到20条相似文献,搜索用时 15 毫秒
1.
The most recent chemical evolution models for D and 3He are reviewed and their results compared with the available data.Models in agreement with the major galactic observational constraints predict deuterium depletion from the Big Bang to the present epoch smaller than a factor of 3 and therefore do not allow for D/H primordial abundances larger than 5 × 10-5. Models predicting higher D consumption do not seem to be able to reproduce other observed features of our galaxy (e.g. SFR, abundances, abundance ratios and/or gradients of heavier elements, metallicity distribution of G-dwarfs).Observational and theoretical 3He abundances can be reconciled with each other if the majority of low mass stars experience in the red giant phase a deep mixing allowing the consumption of most of the 3He produced during core-hydrogen burning. 相似文献
2.
We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the
3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle
the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M
⊙) to intermediate-mass (M∼2–5M
⊙) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths,
our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical
evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature,
excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”. 相似文献
3.
The relation between the lithium abundance observed in Population II stars and the primordial abundance, is still an open question (see Cayrel and Duncan, this meeting). A few recent results are discussed. HIPPARCOS data show that the standard model of stellar evolution can explain the 6Li detection in HD 84937, suggesting a negligible depletion of 7Li. A slope in the Li/Teff relation for Pop II dwarfs and a spread of their Li abundance have been advocated, and both used as arguments in favor of Li depletion. The slope is not confirmed when two other independent temperature scales are used. The Li scatter around the plateau is hardly larger than the scatter predicted from determination errors. Hints from a scatter of Li in subgiants of the globular cluster M92 are not completely conclusive. The determination of more accurate Li abundances in the Pop II stars is an urgent but difficult task, requiring better model atmosphere (better convection treatment) and the help of observational data about Pop II stars (such as long base interferometry). 相似文献
4.
We present our measurements of the deuterium to hydrogen ratio (D/H) in QSO absorption systems, which give D/H = 3.40 ± 0.25 × 10-5 based on analysis of four independent systems. We discuss the properties of two systems which provide the strongest constraints on D/H. We outline the systematic effects involved in measurements of D/H and introduce a sophisticated method of analysis which properly accounts for these effects. 相似文献
5.
Høg E. Pagel B.E.J. Portinari L. Thejll P.A. Macdonald J. Girardi L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty. 相似文献
6.
The Local Interstellar Cloud (LIC) surrounds the Solar System and sets the boundary conditions for the heliosphere. Using
both in situ and absorption line data towards ε CMa we are able to constrain both the ionization and the gas phase abundances of the LIC gas at the Solar Location. We find
that the abundances are consistent with all of the carbonaceous dust grains having been destroyed, and in fact with a supersolar
abundance of C. The constituents of silicate grains, Si, Mg, and Fe, appear to be sub-solar, indicating that silicate dust
is present in the LIC. N, O and S are close to the solar values. 相似文献
7.
H. J. Völk 《Space Science Reviews》2007,130(1-4):431-438
The dynamical and chemical effects of the Galactic Wind are discussed. This wind is primarily driven by the pressure gradient of the Cosmic Rays. Assuming the latter to be accelerated in the Supernova Remnants of the disk which at the same time produce the Hot Interstellar Medium, it is argued that the gas removed by the wind is enriched in the nucleosynthesis products of Supernova explosions. Therefore the moderate mass loss through this wind should still be able to remove a substantial amount of metals, opening the way for stars to produce more metals than observed in the disk, by e.g. assuming a Salpeter-type stellar initial mass function beyond a few Solar masses. The wind also allows a global, physically appealing interpretation of Cosmic Ray propagation and escape from the Galaxy. In addition the spiral structure of the disk induces periodic pressure waves in the expanding wind that become a sawtooth shock wave train at large distances which can re-accelerate “knee” particles coming from the disk sources. This new Galactic Cosmic Ray component can reach energies of a few×1018 eV and may contribute to the juncture between the particles of Galactic and extragalactic origin in the observed overall Cosmic Ray spectrum. 相似文献
8.
N. Prantzos 《Space Science Reviews》2007,130(1-4):27-42
After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin
and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one
of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult
to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed
Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ∼constant since the early
days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed
to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties.
The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion
of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently
discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis. 相似文献
9.
R. G. Gratton 《Space Science Reviews》2007,130(1-4):43-52
This paper briefly reviews a few relevant features about the abundances of light elements (D, 4He, 6Li, 7Li, 9Be) in the Milky Way. It places special emphasis on metal-poor stars. Observational concerns are discussed. The use of 7Li and 6Li as cosmological probes and of 9Be as a chronometer for the early evolution of our Galaxy are discussed. 相似文献
10.
P. C. Frisch 《Space Science Reviews》2007,130(1-4):355-365
The properties of interstellar matter at the Sun are regulated by our location with respect to a void in the local matter
distribution, known as the Local Bubble. The Local Bubble (LB) is bounded by associations of massive stars and fossil supernovae
that have disrupted dense interstellar matter (ISM), driving low density intermediate velocity ISM into the void. The Sun
appears to be located in one of these flows of low density material. This nearby interstellar matter, dubbed the Local Fluff,
has a bulk velocity of ∼19 km s−1 in the local standard of rest. The flow is coming from the direction of the gas and dust ring formed where the Loop I supernova
remnant merges into the LB. Optical polarization data suggest that the local interstellar magnetic field lines are draped
over the heliosphere. A longstanding discrepancy between the high thermal pressure of plasma filling the LB and low thermal
pressures in the embedded Local Fluff cloudlets is partially mitigated when the ram pressure component parallel to the cloudlet
flow direction is included. 相似文献
11.
We present helium and CNO isotopic yields for massive mass-losing stars in the initial mass range 15M
M
i 50M
. We investigate their dependence on assumptions about mass loss rates, internal mixing processes, and metallicity, and specify the contributions from stellar winds and from supernova ejecta. 相似文献
12.
T. L. Landecker 《Space Science Reviews》2012,166(1-4):263-280
Synchrotron radiation is generated throughout the Milky Way. It fills the sky, and carries with it the imprint of the magnetic field at the point of origin and along the propagation path. Observations of the diffuse polarized radio emission should be able to provide information on Galactic magnetic fields with detail matching the angular resolution of the telescope. I review what has been learned from existing data, but the full potential cannot be realized from current observations because they do not adequately sample the frequency structure of the polarized emission, or they lack information on large-scale structure. I discuss three surveys, each overcoming one of these limitations, and show how use of complementary data on other ISM tracers can help elucidate the role of magnetic fields in interstellar processes. The focus of this review is on the small-scale field, on sizes comparable with the various forms of interaction of stars with their surroundings. The future is bright for this field of research as new telescopes are being built, designed for the survey mode of observation, equipped for wideband, multichannel polarization observations. 相似文献
13.
Evolution and composition of baryonic matter is influenced by the evolution of other forms of matter and energy in the universe.
At the time of primordial nucleosynthesis the universal expansion and thus the decrease of the density and temperature of
baryonic matter were controlled by leptons and photons. Non-baryonic dark matter initiated the formation of clusters and galaxies,
and to this day, dark matter largely determines the dynamics and geometries of these baryonic structures and indirectly influences
their chemical evolution. Chemical analyses and isotopic abundance measurements in the solar system established the composition
in the protosolar cloud (PSC). The abundances of nuclear species in the PSC led to the discovery of the magic numbers and
the nuclear shell model, and they allowed the identification of nucleosynthetic sites and processes. To this day, we know
the abundances of the ∼300 stable and long-lived nuclides infinitely better in the PSC than in any other sample of matter
in the universe. Thus, we know the exact composition of a Galactic sample of intermediate age, allowing us to check on theories
of Galactic evolution before and after the formation of the solar system. This paper specifically discusses the nucleosynthesis
in the early universe and the Galactic evolution during the last 5 Gyr. 相似文献
14.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds. 相似文献
15.
C. Giammanco P. Bochsler R. Karrer F. M. Ipavich J. A. Paquette P. Wurz 《Space Science Reviews》2007,130(1-4):329-333
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different
sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore,
one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but
even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon
leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances.
In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two
neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined
from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic
sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value. 相似文献
16.
ESO 3.6m Caspec spectra of the LMC luminous blue variable (LBV) taken at minimum have been analysed using NLTE model atmospheres and line formation calculations to derive atmospheric parameters and chemical composition. Using the silicon ionization balance and the hydrogen Balmer lines we deriveT
eff
=17250, log g=1.80 and a microturbulent velocity of 15–20 km/s. The analysis yields abundance ratios by number of approximately 0.43 for He/H, 0.03 for C/N and 0.14 for O/N, implying that enrichment of the atmosphere by processed material has taken place. We have re-evaluated the reddening of R71 using IUE low resolution data and published UBVRIJHKL photometry and derive a value for A
V
of 0.63. We also construct an extinction curve using archive IUE data for mid-B LMC supergiants and show that the extinction is anomalous; the 2175A bump being almost absent and the far UV rise very pronounced. A comparison of our model flux in theV-band with the observed (dereddened)V magnitude and the D.M. of the LMC (18.45), implies that the bolometric magnitude or R71 is –9.9. This is significantly higher than the value of –9.0 usually adopted for R71 and suggests that this object may not in fact be a subluminous LBV. 相似文献
17.
Aristeidis Noutsos 《Space Science Reviews》2012,166(1-4):307-324
Faraday rotation towards polarised pulsars and extragalactic sources is the best observable for determining the configuration of the magnetic field of the Galaxy in its plane and also at high latitudes. The Galactic magnetic field plays an important role in numerous astrophysical processes, including star formation and propagation of ultrahigh-energy cosmic rays; it is also an important component in measurements of the cosmological microwave background. This review article provides a brief overview of the latest advancements in the field, from an observer’s point of view. The most recent results based on pulsar rotation measures are discussed, which show that we have begun to confidently resolve the main features of the Galactic magnetic field on kiloparsec scales, both in the Solar neighbourhood and at larger distances. As we are currently in great anticipation of polarisation observations with new, state-of-the-art telescopes and hardware, a brief overview of how much this field of research will benefit from the upcoming pulsar surveys is also given. 相似文献
18.
Hartmann Lee Ciesla Fred Gressel Oliver Alexander Richard 《Space Science Reviews》2017,212(1-2):813-834
Space Science Reviews - We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on... 相似文献
19.
D. J. Lennon Paolo A. Mazzali F. Pasian P. Bonifacio V. Castellani 《Space Science Reviews》1993,66(1-4):169-172
Medium resolution (2A/px) but high s/n spectra of approximately twenty of the brightest blue stars in the young open cluster NGC 330 in the SMC have been analyzed in order to determine their atmospheric parameters and the evolutionary status. Stellar parameters are determined by comparison with LTE and NLTE model atmosphere calculations and an HR diagram constructed. Luminosities of the sample stars lie in the range 4.0L
*/L
)<5.0 and spectral types between O9 and late-B. The stars in our sample appear to define 4 groups: main-sequence B-stars (B2-B4), B-supergiants (B4) in a blue-loop phase of evolution, a small number of blue stragglers (O9-B0 near main-sequence stars) and a group of luminous giants (B1-B2) which reside in the so-called post main-sequence gap of the HR diagram. Furthermore, we have confirmed spectroscopically the very high incidence of Be stars in this cluster. Finally the almost complete absence of metal lines (at this resolution) is in keeping with the expected very low metallicity of the SMC. 相似文献
20.
N. Werner F. Durret T. Ohashi S. Schindler R. P. C. Wiersma 《Space Science Reviews》2008,134(1-4):337-362
Because of their deep gravitational potential wells, clusters of galaxies retain all the metals produced by the stellar populations
of the member galaxies. Most of these metals reside in the hot plasma which dominates the baryon content of clusters. This
makes them excellent laboratories for the study of the nucleosynthesis and chemical enrichment history of the Universe. Here
we review the history, current possibilities and limitations of the abundance studies, and the present observational status
of X-ray measurements of the chemical composition of the intra-cluster medium. We summarise the latest progress in using the
abundance patterns in clusters to put constraints on theoretical models of supernovae and we show how cluster abundances provide
new insights into the star-formation history of the Universe. 相似文献