首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
咸裕丰  孙冰 《推进技术》2021,42(7):1561-1569
为研究针栓式喷注器结构对液氧/甲烷发动机推力室燃烧性能的影响,采用非绝热稳态扩散火焰面模型,并考虑真实流体的物性,对针栓式喷注器液氧/甲烷发动机推力室的跨临界燃烧和流动进行数值模拟。结果表明,针栓式喷注器发动机在推力室头部区域形成两个回流区;在一定范围内,减小针栓式喷注器径向喷注通道尺寸和针阀直径,可以提高燃烧室压力和燃气温度,从而提高推力室的燃烧性能;对于针阀伸进燃烧室长度,为提高推力室的燃烧性能,同时考虑推力室头部的冷却问题,应取越程比在1附近。  相似文献   

2.
针栓式喷注器锥形液膜破碎特性试验   总被引:6,自引:2,他引:4  
采用高速摄影获得了针栓式喷注器在不同喷注压降和结构参数下的表面波破碎图像,测量了锥形液膜的破碎长度和破碎时间,研究了变工况时液膜破碎长度和破碎时间的变化规律.试验结果表明:在喷注压降不变的条件下,针栓式喷注器能够实现流量的线性调节.针栓式喷注器设计时,在合理的推进剂动量比范围内,狭缝宽度应尽量取小.液膜在低工况时破碎得更快.液膜破碎长度和破碎时间均随喷注压降的增加而减小.   相似文献   

3.
针栓喷注器中心推进剂偏转角模型分析研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张波涛  李平  王凯  陈宏玉 《推进技术》2021,42(7):1534-1543
为了实现针栓喷注器中心推进剂偏转角的准确预测,基于流场分析建立了中心推进剂偏转角理论模型。从动量守恒方程推导了中心推进剂偏转角公式,通过数值仿真和试验结果对其进行验证,并分析了工况参数和结构参数对中心推进剂偏转角的影响规律。结果表明:理论模型预测值与数值仿真和试验结果很好地吻合,套筒遮挡喷注面积对偏转角影响最大,在变推力时偏转角随着套筒遮挡喷注面积增加而减小。喷注压降、中心筒壁厚和底部凹腔深度对中心偏转角影响很小,当套筒遮挡喷注面积一定时,中心筒底部有凹腔的偏转角比没有凹腔的偏转角约大6°,该模型为针栓喷注器工程设计和进一步精确计算变推力下的雾化角提供了重要参考。  相似文献   

4.
针栓式喷注单元膜束撞击雾化混合过程数值模拟   总被引:5,自引:1,他引:5  
王凯  雷凡培  杨岸龙  杨宝娥  周立新 《航空学报》2020,41(9):123802-123802
为了全面认识针栓式喷注器喷雾场结构,基于自适应网格加密技术和分三相计算的PLIC VOF(Piecewise Linear Interface Calculation Volume of Fluid)方法对针栓式喷注单元膜束撞击雾化混合过程进行了仿真分析,通过对两路推进剂分别进行界面追踪,获得了膜束撞击雾化混合过程的详细结构特征,与高速摄影试验结果定性定量对比均吻合较好,验证了数值方法的准确性。以此为基础对膜束撞击的喷雾场结构、撞击变形过程、流场涡结构、雾化破碎典型特征及破碎后的雾化混合分布特征进行了识别分析,结果表明:膜束撞击形成了液束未穿透液膜和液束穿透液膜2种不同的喷雾扇结构。膜束撞击形成的喷雾扇呈"Ω"形,膜束同时发生弯曲变形和横截面变形。另外,膜束撞击同时受到正压和剪切应力作用,导致了一系列复杂涡流现象,使得相互作用增强,雾化混合均增强,这也是膜束撞击喷注构型优于膜膜撞击的本质原因。最后,还发现膜束撞击喷雾场液滴分布呈现分区结构特征,分别是液束控制主导的上雾化区、液膜控制主导的下雾化区及夹在中间的混合区,实际中应兼顾雾化特性和混合特性,选取中等动量比膜束撞击,这可为针栓式喷注器的理论研究和工程设计提供重要参考。  相似文献   

5.
张彬  成鹏  陈慧源  李清廉 《推进技术》2022,43(6):224-233
径向孔型针栓喷注器相对于径向缝型针栓喷注器具有更复杂的喷雾场。为了研究径向孔型针栓喷注器的喷雾场结构,将径向孔型针栓喷注器简化为单个气体射流与液膜碰撞的针栓喷注单元,采用了背景光成像系统结合激光相位多普勒技术(PDA),以水和空气为模拟介质,对液气式针栓喷注单元的喷雾场进行了试验研究。试验结果表明,液气式针栓喷注单元喷雾的三维结构呈现“喇叭”状。根据喷雾的形成过程及液滴的分布,液气式针栓喷注单元喷雾可以划分为4个区域:碰撞区、液滴区、液雾区及液丝区。液气式针栓喷注单元喷雾的分布范围可由内边界角、外边界角、中线角及散布角表示,均随局部动量比的增大而增大。液滴区的粒子主要由碰撞过程产生,SMD较大;液雾区的粒子经碰撞过程产生后,在气动力作用下进一步雾化,SMD小。由于液雾区的速度和粒径同时受到气动力作用的影响,粒径分布与速度分布在空间上呈现负相关趋势。  相似文献   

6.
针对常温推进剂发动机推力室再生冷却和撞击式喷注器结构,分析了推力室身部与喷注器对接部位的流场特性,对流场均匀性进行了实验测量。结果表明:推力室身部再生冷却通道出口压力存在约0.15 MPa周向不均匀。身部出口节流显著提高局部流速,使喷注器面氧化剂湍流度和不均匀性增加,进而改变燃烧特性。通过撞击喷注单元雾化试验,获得了18 m/s的推进剂入口边界流速。基于喷注器流场均匀性,提出控制推进剂流速,降低不均匀性,进而抑制纵向高频燃烧不稳定性的控制方法。发动机热试结果表明,采用(15±1) m/s的推进剂入口流速,控制方法抑制了纵向高频燃烧不稳定性。  相似文献   

7.
为了探究连续旋转爆轰发动机环形燃烧室内煤油射流在同轴气流作用下的雾化过程,采用开源软件OpenFOAM中基于欧拉-拉格朗日方法的sprayFoam求解器对其进行数值模拟,开展了喷射角度、相邻喷嘴夹角、背压和气液速度比对雾化特性影响的研究。研究表明:sprayFoam求解器可以较好的模拟环形燃烧室内液态燃料的喷射雾化特性;随着喷射角度和背压增大,液滴雾化后的粒径逐渐减小;相邻喷嘴角度为15°时燃料雾化后的液滴分布最佳,此时液滴索特尔平均直径为85.1μm;不同气液速度比的射流末端液滴速度最终趋于一致,均约为160m/s。  相似文献   

8.
为了准确预测气液针栓喷注单元的雾化角,基于动量守恒建立了液束撞击气膜的雾化角理论模型,通过试验结果获得变形因子,并分析了结构参数和工况参数对雾化角的影响规律。结果表明:局部动量比对雾化角影响最大,其他结构参数和工况参数都是通过影响局部动量比而进一步决定雾化角;随着局部动量比增大,液束变形程度减小,液束变形导致有效撞击动量比小于几何动量比。根据试验结果分段给出了变形因子,当局部动量比范围为0~3时,变形因子推荐值为0.61,当局部动量比范围为3~4.5时,变形因子推荐值为0.70,当局部动量比范围为4.5~7.2时,变形因子推荐值为0.75,引入变形因子的理论预测值与试验结果吻合很好,该模型可为气液针栓喷注器的理论研究和工程设计提供参考。   相似文献   

9.
针栓式喷注单元雾化角模型分析   总被引:2,自引:1,他引:2  
王凯  雷凡培  张波涛  杨岸龙  周立新 《航空学报》2020,41(10):123622-123622
为了实现不同径向孔形的针栓式喷注器雾化角的准确预测,从动量守恒方程出发建立了液膜撞击液膜和液膜撞击液束的雾化角理论修正模型。对于液膜撞击液膜的喷注单元,模型中通过理论推导引入了2个变形因子,将撞击的几何变形效应与雾化角关联;对于液膜撞击液束,通过引入阻塞率定义有效撞击动量比,同时将液束入口孔形的影响隐含考虑在变形因子中,最后根据高速摄影试验结果和数值仿真结果获得了对应的变形因子组合系数,使得新的雾化角模型适应性更广、准确性更高。结果表明:引入变形因子和阻塞率的理论模型预测值与试验及数值仿真结果吻合很好;对于液膜撞击液膜,变形因子基本维持在0.9~1.1,根据试验结果及仿真结果,变形因子推荐值为C1=0.99和C2=1.06;对于液膜撞击液束,变形因子推荐值为C1=0.75和C2=1.25。该模型根据实际出口的轴向动量和合成总动量计算雾化角,隐含考虑了撞击作用造成的影响,较根据撞击前入口的轴向动量和合成总动量计算雾化角的常用模型预测值准确度显著提高,为针栓式喷注器的理论研究和工程设计提供了重要参考。  相似文献   

10.
涡流冷却推力室燃烧效率分析   总被引:2,自引:2,他引:0       下载免费PDF全文
李家文  王化余  叶汉玉  俞南嘉 《推进技术》2013,34(11):1507-1512
为了分析喷注器对涡流冷却推力室燃烧效率的影响,开展了2kN气氢/气氧涡流冷却推力室的设计、仿真与试验研究,设计加工了三种不同喷嘴分布直径的氢喷注面板,在试验过程中测量了推力、燃烧室圆筒段内壁面温度、内壁面压力等参数,利用热力计算、流场仿真与试验测量结果对涡流冷却推力室燃烧效率进行了分析。结果表明,在所分析的三种喷注面板中,喷嘴分布半径最大的推力室燃烧效率最高,为97.6%。同时开展了透明燃烧室的试验研究,高温火焰在燃烧室圆筒段59.5%半径以内区域,验证了内外涡流结构的存在。仿真结果表明,氢喷嘴分布直径影响燃烧区域的分布,从而影响燃烧效率。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号