首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 766 毫秒
1.
E A Ilyin 《Acta Astronautica》1981,8(9-10):1149-1157
Many rat experiments onboard Cosmos biosatellites have furnished information concerning the effects of weightlessness, artificial gravity, and ionizing radiation combined with weightlessness on structural and biochemical parameters of the animal body. The necessity to expand the scope of physiological investigations has led to the project of flight primate studies. It is planned to carry out the first primate experiments onboard the Cosmos biosatellite in 1982. At present investigations of weightlessness effects on the cardiovascular and vestibular systems, higher nervous activity, skeletal muscles and biorhythms of two rhesus monkeys are being developed and tested. It is also planned to conduct a study of weightlessness effects on embryogenesis of rats and bioenergetics of living systems onboard the same biosatellite. Further experiments onboard Cosmos biosatellites are planned.  相似文献   

2.
The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.  相似文献   

3.
Organisms use gravity for spatial orientation, and differentiation into species during evolution follows geological processes which are caused by gravity. On the other hand, the task of most organismic functions which have or may have a relation to gravity is to compensate gravity. Furthermore, today it is very obvious that organisms do not disintegrate under the conditions of weightlessness, at least for the currently tested durations. These previous statements indicate a large field of still unknown regulation and adaptation mechanisms. Experiments to simulate weightlessness on the fast clinostat and with hyper-g show a highly developed ability of the genetic chain and of differentiating cells in being autonomous against mechanical stresses caused by outer accelerations. Nevertheless, different strong and slight changes of different tested end points were found. The question remains if the cells react actively or only passively.  相似文献   

4.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   

5.
Artificial gravitv generated by spacecraft rotation may prove a universal countermeasure against adverse effects of weightlessness in the future. The paper summarizes the results of ground-based biomedical investigations of artificial gravity and flight experiments aboard Soviet biosatellites Cosmos-782 and Cosmos-936. It is believed that at the present stage the major goal of such investigations is to determine the minimum efficient value of artificial gravity in long-term flights which may eliminate adverse effects of prolonged weightlessness. In ground-bound studies the highest priority should be given to the development of methods on increasing human tolerance to the rotating environment.  相似文献   

6.
The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.  相似文献   

7.
The Cosmos-782 flight from 25 November to 15 December 1975, carried biological experiments designed to study the effects of weightlessness on insects and fish and on gravitropism and growth in several seed varieties. Investigations carried out on Drosophila melanogaster measured the frequency of recessive lethal mutations and the change in genetic distances in the sex chromosome. The study of Fundulus heteroclitus eggs and fry compared the effects of weightlessness and artificial gravity. Plants experiments studied spatial orientation of over and underground organs of Pinus silvestris and Crepis capillaris seeds. Other investigations used Phycomyces blakesleanus to compare spatial orientation and growth and development in weightlessness and artificial gravity.  相似文献   

8.
为解决失重环境对航天员生理健康的影响,在调研国内外重力飞行器研究现状的基础上,结合重力模拟飞行器的原理及人造重力舒适度影响因素,提出了一种通过自旋产生人造重力的深空探测飞行器方案设想。最后给出了重力模拟飞行器建设的实施规划、总体方案、在轨组装流程及技术难点。深空探测重力模拟飞行器稳定运转可为空间工作生活的航天员提供与地面无异的重力环境,将为执行深空探测任务提供必要的环境保障。  相似文献   

9.
Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones.  相似文献   

10.
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in- and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.  相似文献   

11.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

12.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   

13.
This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.  相似文献   

14.
As a direct consequence of exposure to microgravity astronauts experience a number of physiological changes, which can have serious medical implications when they return to Earth. Most immediate and significant are the head-ward shift of body fluids and the removal of gravitational loading from bone and muscles, which lead to progressive changes in the cardiovascular and musculoskeletal systems. Cardiovascular adaptations result in an increased incidence of orthostatic intolerance (fainting) post-flight, decreased cardiac output and reduced exercise capacity. Changes in the musculoskeletal system contribute significantly to the impaired functions experienced in the post-flight period. The underlying factor producing these changes is the absence of gravity. Countermeasures, therefore, are designed primarily to simulate Earth-like movements, stresses and system interactions. Exercise is one approach that has received wide operational use and acceptance in both the US and Russian space programmes, and has enabled humans to stay relatively healthy in space for well over a year. Although it remains the most effective countermeasure currently available, significant physiological degradation still occurs. The development of other countermeasures will therefore be necessary for longer duration missions, such as the human exploration of Mars.  相似文献   

15.
The eye perceives the length of vertical and horizontal lines with an inherent asymmetry. A vertical line having the same length as a horizontal one is usually perceived to be longer. In this experimental investigation we tested the hypothesis that gravity has a direct role in producing the observed perceptual asymmetry. To this end we performed experiments in weightlessness during long-orbital space flights onboard the MIR station. Subjects performed a psychophysical task in which the length of a visually-presented vertical line was adjusted to match the length of a horizontal reference. On Earth, almost all subjects produce errors in adjusting the length of the vertical line, consistently under-estimating the length of the horizontal reference. The asymmetry of perception of the line lengths persisted in weightlessness. From these results we conclude that the phenomena of asymmetry of perception of the lengths of vertical and horizontal lines is not dependent on gravity, but is instead defined by properties of the system of internal representation. Grant numbers: 99-04-48450.  相似文献   

16.
在地面上用磁性液体制造流体的超重、失重和微重力环境   总被引:4,自引:1,他引:4  
王正良 《宇航学报》2004,25(2):179-182
磁力和重力均为非接触的力,当作用于磁性液体上的磁力和重力方向相同时,磁性液体处于超重状态;当作用于磁性液体上的磁力和重力方向相反时,磁性液体处于失重状态;当作用于磁性液体上磁力和重力相互抵消,磁性液体呈饱和磁化状态且处在均匀梯度磁场区域中时,磁性液体被表面张力约束成球体,磁性液体处于微重力状态。这一发现使我们在地面上能经济的、方便的、长时间的制造流体的小区域微重力环境,为研究微重力状态下的流体科学、生命科学,材料加工和器件开发等提供了新的方法。  相似文献   

17.
With the advent of a permanently manned Space Station, the longstanding problems of radiation protection in manned spaceflight have acquired an immediacy. This paper endeavors to emphasize the gaps of our knowledge which must be closed for effective radiation protection. The information that is required includes the accurate determination of the exposure inside the space station to the various components of the ionizing radiation, the evaluation of the biological importance of the different radiation qualities and the depth-dose distribution of the less penetrating component. There is also the possibility of an interaction with weightlessness. It is necessary to establish adequate radiation protection standards and a system of dosimetric surveillance. There is a need for studies of methods on the possibilities of hardening selective shielding of the space station. Spaceflight experiments, which might contribute to the solution of some of these problems are discussed.  相似文献   

18.
《Acta Astronautica》2008,62(11-12):1002-1009
Under weightlessness, the effect of harmonic vibrations can easily induce average motions in fluids with density inhomogeneities. We will consider more particularly pure fluids near their gas–liquid critical point, where the temperature variation of all important parameters (e.g. interfacial tension, density difference) follows universal, scaling laws. We will thus study, below the critical point, the ordering of the gas–liquid interfaces (at equilibrium and during the phase separation) and, above the critical point, some thermovibrational instabilities. These studies have been performed in the Russian MIR station and in the MiniTexus and Maxus rockets of ESA and under magnetic compensation of gravity on earth.  相似文献   

19.
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   


20.
The manned exploration of the solar system and the surfaces of some of the smaller planets and larger satellites requires that we are able to keep the adverse human physiological response to long term exposure to near zero and greatly reduced gravity environments within acceptable limits consistent with metabolic function. This paper examines the physiological changes associated with microgravity conditions with particular reference to the weightless demineralizatoin of bone (WDB). It is suggested that many of these changes are the result of physical/mechanical processes and are not primarily a medical problem. There are thus two immediately obvious and workable, if relatively costly, solutions to the problem of weightlessness. The provision of a near 1 g field during prolonged space flights, and/or the development of rapid transit spacecraft capable of significant acceleration and short flight times. Although these developments could remove or greatly ameliorate the effects of weightlessness during long-distance space flights there remains a problem relating to the long term colonization of the surfaces of Mars, the Moon, and other small solar system bodies. It is not yet known whether or not there is a critical threshold value of 'g' below which viable human physiological function cannot be sustained. If such a threshold exists permanent colonization may only be possible if the threshold value of 'g' is less than that at the surface of the planet on which we wish to settle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号