首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
本文介绍铝波导高温炉钎焊工艺,通过对钎剂、钎料和母材成份、性能以及钎焊规范的分析,尤其是对炉温规范,钎料、钎剂熔化时间、零件间隙、定位方法、钎剂和钎料选放位置等问题进行了探讨;文章还包括利用丙酮调附剂固定各方位的钎料,复杂零件的钎焊炉温规范和接头间隙的处理等内容。本文介绍给从事铝合金微波器件制造工作者,供工作中参考。  相似文献   

2.
介绍了铝及铝合金高温空气炉中钎焊,通过对炉中钎焊规范的分析,钎料、钎剂熔化时间、零件间隙、定位方法、钎剂和钎料选放位置等问题进行了探讨。  相似文献   

3.
采用几种钎料对碳纤维复合材料与钛合金进行真空钎焊,重点探讨了含Ti钎料钎焊碳纤维复合材料与钛合金连接界面的微观组织。研究表明,含Ti钎料润湿连接碳纤维复合材料与钛合金TC4的过程可分为五个阶段:钎料与母材的物理接触以及钎料的熔化;原子的扩散;反应层的生成;反应层沉积变厚,润湿复合材料;形成接头。研究结果对于碳纤维复合材料与钛合金的连接及在重要航天器中的应用具有重要参考价值。  相似文献   

4.
阐述了C/SiC陶瓷基复合材料与铌合金的活性钎焊连接方式,通过扫描电镜、金相分析等手段,研究了钛基和铜基活性钎焊料分别在C/SiC陶瓷基复合材料和铌合金上的润湿性,并分析了两种材料的钎焊连接界面的微观元素扩散特征。研究结果表明,陶瓷基复合材料与铌合金的活性钎焊机理主要是通过钎焊料中的活性元素分别向陶瓷和铌合金中扩散并发生化学反应,从而实现三者之间的良好键合。  相似文献   

5.
为了避免在铝合金焊接中产生晶粒长大、溶蚀等缺陷,提高铝合金的钎焊质量,本文在Al-Si共晶钎料的基础上加入合金元素Cu和其它微量元素,研制新的低熔点钎料,最后确定新钎料为Al19Cu9Si。该钎料的熔点为543℃,比BAl86.5SiMg钎料的熔点降低了40℃,试验结果表明新钎料具有良好的润湿性、流动性,接头的剪切强度、抗腐蚀性能均满足铝合金钎焊要求。  相似文献   

6.
刘世镇 《航天制造技术》1989,(3):60-62,F003
电工纯铁DT2轭铁和铅黄铜HPb59—1隔板经表面镀镍,应用气体保护钎焊工艺,焊料HLAgCu30—52,厚0.12,装夹力0.98Mpa,无钎剂,钎焊温度730℃,保温13分钟,经100倍金相检验,焊缝宽度均匀、焊料扩散良好,拉力试验,拉拉强度在196N/mm~2以上。生产数万件,质量稳定。  相似文献   

7.
钛合金与不锈钢高频感应钎焊工艺试验研究   总被引:5,自引:1,他引:5  
采用Ag-Cu-Ti钎料进行了钛合金与不锈钢异种金属组合薄壁小直径管路结构的真空高频感应钎焊工艺试验研究,重点分析了钎焊工艺对钛合金与不锈钢管路真空高频感应钎焊接头质量与性能的影响因素,并观察分析了钎焊接头的微观组织和接头区域成分。研究表明,通过应用本试验研究获得的最佳工艺参数能够获得内外部质量、密封性能和力学性能优良的接头;接头形式是影响钛合金与不锈钢高频感应钎焊接头质量与性能的最主要因素,不锈钢作为外套管形式的钎焊接头性能要远远优于钛合金作为外套管形式的接头性能,此外,装配间隙和搭接长度也会明显影响接头的承载能力。研究结果对于钛合金与不锈钢等异种金属管路焊接结构在卫星等重要航天器中的应用具有重要意义。  相似文献   

8.
针对Si_3N_4/TC4复合结构钎焊连接问题,研究了钎料和母材中活性元素Ti对Si_3N_4/TC4接头润湿性、界面结合机制和力学性能的影响。进行了润湿、接头显微组织分析和剪切强度试验,结果表明:活性元素Ti对于钎料在陶瓷表面的润湿起主要作用,Ag-Cu钎料通过TC4母材中Ti元素的长程扩散进入Si_3N_4界面虽然实现润湿,但形成的反应产物并不明显,陶瓷/钎料界面成为断裂薄弱区域。Ag-Cu-Ti钎料中Ti元素在Si_3N_4一侧界面富集形成TiN+Ti_5Si_3反应层,对钎料在陶瓷界面润湿性和接头断裂脆性都具有改善作用,接头剪切强度达到267.3 MPa。  相似文献   

9.
采用Ti基快速凝固钎料对TiAl基合金和42CrMo钢的真空钎焊进行研究,对分别在三种工艺条件下获得的接头性能进行了比较。通过扫描电镜和X射线衍射对接头组织进行了分析,确定了快速凝固钎料在界面层中的生成相。  相似文献   

10.
简述了导管焊接接头的几种结构设计形式。给出了钎焊料的尺寸规格及最佳装配间隙和校核剪切应力的方法。  相似文献   

11.
在钎焊温度1 080℃、保温时间0~15min条件下,用Ti-28Ni钎料对Ti60与高铌TiAl合金钎焊连接进行了研究。用SEM,EDS等方法对接头微观组织进行分析,并研究了保温时间对接头连接界面微观组织和力学性能的影响。结果表明:获得的接头无气孔和热裂纹,接头的典型界面结构为Ti60/α+(α+β)/Ti_2Ni+(α+B2)/α+Ti_3Al/Ti_3Al/B2/高铌TiAl合金;当保温时间较短时,断裂发生在钎缝处,钎缝区含大量Ti_2Ni相,随着保温时间的延长,Ti_2Ni相逐渐消失,α+Ti_3Al网状区面积不断增大且向Ti60合金侧偏移,保温时间过长时,接头断裂位置由钎缝区向高铌TiAl合金母材侧偏移,断裂形式为脆性断裂。保温时间10min时,接头平均剪切强度达到最大值139 MPa。  相似文献   

12.
本文从微波器件及真空器件要求出发,研究了LF21铝合金波导器件使用微量氟 化物钎剂的氢气保护钎焊工艺,和氮气、氩气及混合气体相比,氢气保护下,铝硅 系共晶钎料在LF21上的铺展、填隙及形成圆角等方面均最佳,钎焊接头的机械 性能、抗腐蚀性能及涂复性能优良,特别是经氢气保护下的钎焊接头不经钎后清 洗可以直接进行表面涂复处理。在本工艺条件下,关于氧化膜的破除机理在文中做 了初步探讨,研究表明本工艺具有较高的经济效益。  相似文献   

13.
针对目前我国安装位置卫星钛导管氩弧焊存在的导管装配精度要求高、焊接周期长,接头焊缝凹陷严重等问题,在远离高频加热装置7米处,进行了模拟卫星安装位置的φ6×1mm钛导管氩气保护感应钎焊试验。试验时使用了可分式钎焊钳和70Ti—15Cu—15Ni钎料。从感应钎焊的钛导管接头的拉伸强度,液压,检漏和振动等试验结果来看,该工艺有可能替代我们目前使用的不添加焊丝的全位置氩弧焊连接工艺。  相似文献   

14.
Ti-15Cu-15Ni真空钎焊TiAl合金   总被引:7,自引:0,他引:7  
在钎焊温度950℃,钎焊时间8~30min条件下,对TiAl/Ti-15Cu-15Ni/TiAl进行了真空钎焊试验,借助SEM、EDS分析和三元相图,探讨了界面微观组织结构,并通过拉伸试验评价了接头强度。研究结果表明,界面反应层由柱状两相区、网状析出区、过渡区、残余钎料区组成。在950℃,15min条件下,接头拉伸强度最高达到295MPa,保温时间延长或缩短,强度下降。  相似文献   

15.
本文介绍一种氮气保护无腐蚀胶状钎剂铝合金全位置钎焊工艺。 前言 在航天、航空和通讯事业上铝合金钎焊后的腐蚀问题,一直是各有关方面十分重视并正在加以研究的课题之一。采用无腐蚀钎剂代替腐蚀性氯化物钎剂进行钎焊,其目的是为解决传统上大量采用氯化物钎剂钎焊所造成的腐蚀问题。  相似文献   

16.
波导法兰盘在波导管上的定位尺寸,直接决定了法兰平面的机加工余量,从而影响到法兰的厚度及钎缝的质量。通过钎接前后实测法兰定位尺寸,探索焊接变形的影响,证实钎接接头形式的可靠性。法兰平面机加工余量的合理选择,确保了钎缝的质量及法兰的厚度。无镉银钎料,不仅熔点低,钎焊性及防腐蚀性亦很好,且消除了有毒镉蒸气对人体的危害。  相似文献   

17.
通过介绍微波器件高温空气炉钎焊的应用,对影响钎缝质量的材料、钎剂、钎料、焊接工艺参数等因素进行分析,解决钎焊过程中出现的质量问题。  相似文献   

18.
针对铝钎缝X光照片上显示出的缺陷形貌,依据钎焊的填缝机理及冶金原理,从钎缝的结构、间隙及钎焊工艺等方面,探讨了钎缝中缺陷的实际形态及形成原因,为减少钎缝缺陷、提高钎缝钎着率提供一定的依据。  相似文献   

19.
核电站堆内装置热电倡传感器的密封接头与铠装传感器集束钎焊,选用氩气保护下的高频钎焊工艺,高频电源GH100-H9 100kW 25~450kHz。钎料Au—Ni合金,其钎焊温度恰与集束件材料OCr18Ni9Ti的热处理温度相同。钎料为φ0.8mm丝材,辅以定量细屑状钎料,焊前准备工作镀镍、清洗,采用中间停电的三工步加热法,使集束件受热均匀,焊后检验,24.52MPa下无渗漏;剖切镜检,焊透率及热影响区合格;热电偶的电性能,包括线电阻、绝缘电阻、热电势的变动均在允许范围内。  相似文献   

20.
采用铝硅共晶焊丝对铝合金/不锈钢异种金属管进行了TIG熔钎焊接实验,研究了镀Zn层的挥发对接头性能的影响,分析了接头微观组织,测试了接头力学性能。研究结果表明,不锈钢表面镀Zn层能够增强液态钎料在钢表面润湿铺展及防止金属间化合物生成的作用,在多道焊过程中镀Zn层过热挥发失去了对钢表面的保护,在界面生成脆性的金属间化合物,并且Zn的挥发在接头中形成气孔缺陷;不锈钢界面层上部镀Zn层熔化严重,液态钎料对不锈钢产生溶蚀作用,Fe元素通过镀Zn层向液态Al-Si熔池中扩散,形成了枝晶状的Al-Fe金属间化合物,在界面层也生成了金属间化合物层,不锈钢界面层下部镀Zn层完整,起到了良好的保护作用;拉伸试件断裂于不锈钢与焊缝的界面处,接头为整体脆性断裂,抗拉强度达到105MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号