首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational-rotational motion of two viscoelastic planets in a gravitational force field is studied. The planets are modeled by homogeneous isotropic viscoelastic bodies. In their natural undeformed state each of the planets represents a sphere. We investigate a specific case when the planet’s centers of mass move in a fixed plane, the axis of rotation for each planet being directed along the normal to this plane. An equation describing the evolution of a slow angular variable (perihelion longitude) is derived. The observed displacement of the perihelion of Mercury is compared with the results obtained in the considered model problem about motion of two viscoelastic planets. Quite important is the fact that the planet of smaller mass (Mercury) moves not in a central Newtonian field of forces, but rather in the gravitational field of a rotating viscoelastic planet (Sun).  相似文献   

2.
We study the translational–rotational motion of a planet modeled by a viscoelastic sphere in the gravitational fields of an immovable attracting center and a satellite modeled as material points. The satellite and the planet move with respect to their common center of mass that, in turn, moves with respect to the attracting center. The exact system of equations of motion of the considered mechanical system is deduced from the D'Alembert–Lagrange variational principle. The method of separation of motions is applied to the obtained system of equations and an approximate system of ordinary differential equations is deduced which describes the translational–rotational motion of the planet and its satellite, taking into account the perturbations caused by elasticity and dissipation. An analysis of the deformed state of the viscoelastic planet under the action of gravitational forces and forces of inertia is carried out. It is demonstrated that in the steady-state motion, when energy dissipation vanishes, the planet's center of mass and the satellite move along circular orbits with respect to the attracting center, being located on a single line with it. The viscoelastic planet in its steady-state motion is immovable in the orbital frame of reference. It is demonstrated that this steady-state motion is unstable.  相似文献   

3.
The precession of Saturn under the effect of the gravity of the Sun, Jupiter and planet’s satellites has been investigated. Saturn is considered to be an axisymmetric (A = B) solid body close to the dynamically spherical one. The orbits of Saturn and Jupiter are considered to be Keplerian ellipses in the inertial coordinate system. It has been shown that the entire set of small parameters of the problem can be reduced to two independent parameters. The averaged Hamiltonian function of the problem and the integrals of evolutionary equations are obtained disregarding the effect of satellites. Using the small parameter method, the expressions for the precession frequency and the nutation angle of the planet’s axis of rotation caused by the gravity of the Sun and Jupiter are obtained. Considering the planet with satellites as a whole preceding around the normal to the unmovable plane of Saturn’s orbit, the satellites effect on the Saturn rotation is taken into account via the corrections in the formula for the undisturbed precession frequency. The satellites are shown to have no effect on the nutation angle (in the framework of the accepted model), and the disturbances from Jupiter to make the main contribution to the nutation angle evolution. The effect of Jupiter on the nutation angle and the precession period is described with regard to the attraction of satellites.  相似文献   

4.
5.
The problem of a rendezvous in the central Newtonian gravitational field is considered for a controlled spacecraft and an uncontrollable spacecraft moving along an elliptic Keplerian orbit. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems and using quaternion variables to describe the orientations of these coordinate systems. In the first variant of the equations of motion a quaternion variable characterizes the orientation of an instantaneous orbit of the spacecraft and the spacecraft location in the orbit, while in the second variant it characterizes the orientation of the plane of the spacecraft instantaneous orbit and the location of a generalized pericenter in the orbit. The quaternion variable used in the second variant of the equations of motion is a quaternion osculating element of the spacecraft orbit. The problem of a rendezvous of two spacecraft is formulated as a problem of optimal control by the motion of the center of mass of a controlled spacecraft with a movable right end of the trajectory, and it is solved on the basis of Pontryagin's maximum principle.  相似文献   

6.
The relative equilibria of a two spacecraft tether formation connected by line-of-sight elastic forces moving in the context of a restricted two-body system and a circularly restricted three-body system are investigated. For a two spacecraft formation moving in a central gravitational field, a common assumption is that the center of the circular orbit is located at the primary mass and the center of mass of the formation orbits around the primary in a great-circle orbit. The relative equilibrium is called great-circle if the center of mass of the formation moves on the plane with the center of the gravitational field residing on it; otherwise, it is called a nongreat-circle orbit. Previous research shows that nongreat-circle equilibria in low Earth orbits exhibit a deflection of about a degree from the great-circle equilibria when spacecraft with unequal masses are separated by 350 km. This paper studies these equilibria (radial, along-track and orbit-normal in circular Earth orbit and Earth–Moon Libration points) for a range of inter-craft distances and semi-major axes of the formation center of mass. In the context of a two-spacecraft Coulomb formation with separation distances on the order of dozens of meters, this paper shows that the equilibria deflections are negligible (less than 10?6°) even for very heterogeneous mass distributions. Furthermore, the nongreat-circle equilibria conditions for a two spacecraft tether structure at the Lagrangian libration points are developed.  相似文献   

7.
Vetlov  V. I.  Novichkova  S. M.  Sazonov  V. V.  Chebukov  S. Yu. 《Cosmic Research》2000,38(6):588-598
A mode of motion of a satellite with respect to its center of mass is studied, which is called the biaxial rotation in the orbit plane. In this mode of rotation, an elongated and nearly dynamically symmetric satellite rotates around the longitudinal axis, which, in turn, rotates around the normal to the plane of an orbit; the angular velocity of rotation around the longitudinal axis is several times larger than the orbital angular velocity, deviations of this axis from the orbit plane are small. Such a rotation is convenient in the case when it is required to secure a sufficiently uniform illumination of the satellite's surface by the Sun at a comparatively small angular velocity of the satellite. The investigation consists of the numerical integration of equations of the satellite's motion, which take into account gravitational and restoring aerodynamic moments, as well as the evolution of the orbit. At high orbits, the mode of the biaxial rotation is conserved for an appreciable length of time, and at low orbits it is destroyed due to the impact of the aerodynamic moment. The orbit altitudes and the method of constructing the initial conditions of motion that guarantee a sufficiently prolonged period of existence of this mode are specified.  相似文献   

8.
Vil'ke  V. G. 《Cosmic Research》2004,42(4):374-381
The motion of a planet consisting of a mantle and a core (solid bodies) connected by a viscoelastic layer and interacting with each other and an external point mass by the law of gravitation is considered. The mutual motions of the core and mantle are investigated assuming that the centers of mass of the planet and external point mass moves along undisturbed Keplerian orbits around the common center of mass of the system. The planetary core and mantle have an axial symmetry and different principal moments of inertia, which leads to a displacement of the center of mantle relative to the center of core and to their mutual rotations. The results obtained on the basis of averaged equations are illustrated by the example of the Earth–Moon system.  相似文献   

9.
Chelnokov  Yu. N. 《Cosmic Research》2001,39(5):470-484
The problem of optimal control is considered for the motion of the center of mass of a spacecraft in a central Newtonian gravitational field. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems. Both the variants have a quaternion variable among the phase variables. In the first variant this variable characterizes the orientation of an instantaneous orbit of the spacecraft and (simultaneously) the spacecraft location in this orbit, while in the second variant only the instantaneous orbit orientation is specified by it. The suggested equations are convenient in the respect that they allow the general three-dimensional problem of optimal control by the motion of the spacecraft center of mass to be considered as a composition of two interrelated problems. In the first variant these problems are (1) the problem of control of the shape and size of the spacecraft orbit and (2) the problem of control of the orientation of a spacecraft orbit and the spacecraft location in this orbit. The second variant treats (1) the problem of control of the shape and size of the spacecraft orbit and the orbit location of the spacecraft and (2) the problem of control of the orientation of the spacecraft orbit. The use of quaternion variables makes this consideration most efficient. The problem of optimal control is solved on the basis of the maximum principle. Several first integrals of the systems of equations of the boundary value problems of the maximum principle are found. Transformations are suggested that reduce the dimensions of the systems of differential equations of boundary value problems (without complicating them). Geometrical interpretations are given to the transformations and first integrals. The relation of the vectorial first integral of one of the derived systems of equations (which is an analog of the well-known vectorial first integral of the studied problem of optimal control) with the found quaternion first integral is considered. In this paper, which is the first part of the work, we consider the models of motion of the spacecraft center of mass that employ quaternion variables. The problem of optimal control by the motion of the spacecraft center of mass is investigated on the basis of the first variant of equations of motion. An example of a numerical solution of the problem is given.  相似文献   

10.
We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999–2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.  相似文献   

11.
Paul Williams   《Acta Astronautica》2009,64(11-12):1191-1223
The dynamics and control of a tethered satellite formation for Earth-pointing observation missions is considered. For most practical applications in Earth orbit, a tether formation must be spinning in order to maintain tension in the tethers. It is possible to obtain periodic spinning solutions for a triangular formation whose initial conditions are close to the orbit normal. However, these solutions contain significant deviations of the satellites on a sphere relative to the desired Earth-pointing configuration. To maintain a plane of satellites spinning normal to the orbit plane, it is necessary to utilize “anchors”. Such a configuration resembles a double-pyramid. In this paper, control of a double-pyramid tethered formation is studied. The equations of motion are derived in a floating orbital coordinate system for the general case of an elliptic reference orbit. The motion of the satellites is derived assuming inelastic tethers that can vary in length in a controlled manner. Cartesian coordinates in a rotating reference frame attached to the desired spin frame provide a simple means of expressing the equations of motion, together with a set of constraint equations for the tether tensions. Periodic optimal control theory is applied to the system to determine sets of controlled periodic trajectories by varying the lengths of all interconnecting tethers (nine in total), as well as retrieval and simple reconfiguration trajectories. A modal analysis of the system is also performed using a lumped mass representation of the tethers.  相似文献   

12.
Libration point orbits may be ideal locations for satellite imaging formations. Therefore, control of these arrays in multi-body regimes is critical. A continuous feedback control algorithm is developed that maintains a formation of satellites in motion that is bounded relative to a halo orbit. This algorithm is derived based on the dynamic characteristics of the phase space near periodic orbits in the circular restricted three-body problem (CR3BP). By adjusting parameters of the control algorithm appropriately, satellites in the formation follow trajectories that are particularly advantageous to imaging arrays. Image reconstruction and coverage of the (u, v) plane are simulated for interferometric satellite configurations, demonstrating potential applications of the algorithm and the resulting motion.  相似文献   

13.
The results of numerical solution of the problem of a rendezvous in the central Newtonian gravitational field of a controlled spacecraft with an uncontrollable spacecraft moving along an elliptic Keplerian orbit are presented. Two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems and using quaternion variables to describe the orientations of these coordinate systems. The problem of a rendezvous of two spacecraft is formulated [1, 2] as a problem of optimal control by the motion of the center of mass of a controlled spacecraft with a movable right end of the trajectory, and it is solved on the basis of Pontryagin's maximum principle. The paper is a continuation of papers [1, 2], where the problem of a rendezvous of two spacecraft has been considered theoretically using the two above variants of the equations of motion for the center of mass of the controlled spacecraft.  相似文献   

14.
15.
Kita R  Rasio F  Takeda G 《Astrobiology》2010,10(7):733-741
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.  相似文献   

16.
The practical tasks related to qualitative investigation of long-term evolution of high-apogee orbits of artificial Earth satellites (AES), for which the main perturbing factors are gravitational perturbations from the Moon and the Sun, are considered. Attention is given to the problem of the ballistic lifetime of similar orbits, and the issues associated with possibilities of the correction of orbits for ensuring the required duration of their ballistic lifetime are considered. The orbit of the SPECTR-R spacecraft launched in July of 2011 is considered as an example.  相似文献   

17.
Results of in-flight tests of three modes of uncontrolled attitude motion of the Progress spacecraft are described. These proposed modes of experiments related to microgravity are as follows: (1) triaxial gravitational orientation, (2) gravitational orientation of the rotating satellite, and (3) spin-up in the plane of the orbit around the axis of the maximum moment of inertia. The tests were carried out from May 24 to June 1, 2004 onboard the spacecraft Progress M1-11. The actual motion of this spacecraft with respect to its center of mass, in the above-mentioned modes, was determined by telemetric information about an electric current tapped off from solar batteries. The values of the current obtained during a time interval of several hours were processed jointly using the least squares method by integration of the equations of the spacecraft’s attitude motion. The processing resulted in estimation of the initial conditions of motion and of the parameters of mathematical models used. For the obtained motions the quasi-static component of microaccelerations was computed at a point onboard, where installation of experimental equipment is possible.  相似文献   

18.
The possibility of the uncontrolled increase of the altitude of an almost circular satellite orbit by the force of the light pressure is investigated. The satellite is equipped with a damper and a system of mirrors (solar batteries can serve as such a system). The flight of the satellite takes place in the mode of a single-axis gravitational orientation, the axis of its minimum principal central moment of inertia makes a small angle with the local vertical and the motion of the satellite around this axis constitutes forced oscillations under the impact of the moment of force of the light pressure. The form of the oscillations and the initial orbit are chosen so that the transverse component of the force of the light pressure acting upon the satellite be positive and the semimajor axis of the orbit would continuously increase. As this takes place, the orbit remains almost circular. We investigate the evolution of the orbit over an extended time interval by the method which employs separate integration of the equations of the orbital and rotational motions of the satellite. The method includes outer and inner cycles. The outer cycle involves the numerical integration of the averaged equations of motion of the satellite center of mass. The inner cycle serves to calculate the right-hand sides of these equations. It amounts to constructing an asymptotically stable periodic motion of the satellite in the mode of a single-axis gravitational orientation for current values of the orbit elements and to averaging the equations of the orbital motion along it. It is demonstrated that the monotone increase of the semimajor axis takes place during the first 15 years of motion. In actuality, the semimajor axis oscillates with a period of about 60 years. The eccentricity and inclination of the orbit remain close to their initial values.  相似文献   

19.
A mechanical system consisting from N deformable spheres interacting according to the law of gravity is considered as a model of planetary system. Deformations of the viscoelastic spheres are described according to the model of the theory of elasticity of small deformations, the Kelvin-Voigt model of viscous forces, and occur under the action of gravitational fields and fields of centrifugal forces. Approximate equations describing motions of the centers of mass of the spheres and their rotations relative to the centers of mass are constructed by the method of separation of motions on the basis of solving quasistatic problems of the theory of viscoelasticity with allowance made for smallness of sphere deformations. Using the first integral of conservation of the angular momentum of the system relative to its center of mass, the expression for the changed potential energy is obtained with the use of the Routh method. An investigation of stationary rotations is carried out, and it is shown that all of them are unstable, if the number of planets is more than two.  相似文献   

20.
杨雅迪  陈奇  李翔宇  乔栋 《宇航学报》2019,40(9):987-995
研究了同步双小行星系统中共振轨道的设计方法及演化规律。首先,基于双椭球模型建立探测器运动方程,并给出共振轨道初值选取方法。然后,利用改进并行打靶法,提出一种双小行星系统平面共振轨道两步修正方法。同时结合稳定性理论及分岔理论,给出双小行星系统三维共振轨道生成和延拓方法;最后,以双小行星系统1999KW4为例,设计了共振比为1∶1,1∶2,1∶3,1∶4,2∶3的平面和空间共振轨道族,并分析了共振轨道的特性及轨道周期和轨道能量的变化规律。给出的双小行星系统中共振轨道的设计方法具有普适性,对未来双小行星系统探测任务中的轨道设计具有一定的参考意义与借鉴价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号