首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 186 毫秒
1.
为研究微型燃烧室蒸发管的雾化蒸发性能,试验研究了进气温度、气油比(AFR)、管壁温度和进口空气流速对燃油蒸发率的影响。试验结果表明:进气温度和进口空气流速是影响蒸发效率的两个主要因素;当气油比减小到3.0时,管内两相流型由膜态沸腾向过渡态沸腾转变,该状态下燃油与管壁的换热效率最低。蒸发管数值仿真引入离散相模型(DPM)和液滴碰壁飞溅模型,蒸发效率计算结果与试验数据呈现相同趋势。在此基础上研究了气动参数对燃油雾化的影响。计算结果表明,进口空气流速的提高可以改善燃油雾化细度,但不利于液滴分布的均匀性,索太尔平均直径(SMD)与进口空气流速的-1.69次方成正比。   相似文献   

2.
航空活塞发动机用自增压喷嘴喷雾特性试验   总被引:1,自引:0,他引:1  
楼煌强  魏民祥  刘锐 《航空动力学报》2020,35(12):2583-2592
为了自增压喷嘴更好地在航空活塞发动机上应用,在定容弹内对自增压喷嘴喷雾特性进行了试验研究。采用可视化技术结合Matlab图像处理程序,研究了RP-3航空煤油在不同背压、燃油温度和环境温度下的喷雾特性。结果表明:背压为0.1 MPa时的喷雾有明显的表面波和油线结构。背压从0.1 MPa增大至0.8 MPa,典型的中空锥喷雾转变成有大尺度涡流的中空锥喷雾,喷雾贯穿距离和喷雾面积的最大值分别减小了45%和55.3%。燃油温度的升高促进了喷雾蒸发有助于冷起动,喷雾贯穿距离、喷雾面积和喷雾锥角均在燃油温度为50 ℃时最小。在背压为0.1 MPa时,喷雾贯穿距离和喷雾面积随着环境温度升高先增大后减小,在环境温度为60 ℃和50 ℃分别有最大值67.3 mm和915.5 mm2,而喷雾锥角则随着环境温度升高而减小,在环境温度为90 ℃时达到最小值9.2°。  相似文献   

3.
为对气助雾化喷射柴油的过程进行数值分析,借助计算流体力学仿真工具Fluent,在不改变喷嘴结构的情况下,建立考虑油气预混腔中柴油喷射过程的三维流体计算模型,研究定容弹内气助雾化喷嘴的柴油/空气两相流喷射过程,并且重点考察喷气压力、环境背压以及燃油温度对气助雾化喷射柴油喷雾特性的影响规律。结果表明:喷气压力对喷雾贯穿距离影响较大,喷气压力由0.65 MPa增大至0.75 MPa后贯穿距离增加12.2%,但柴油索太尔平均直径(SMD)只减小了5.2%,说明在保证燃油SMD处于较好水平时,喷气压力和环境背压绝对压力比值(气相压比)为7.5有利于减少气量消耗;环境背压对喷雾贯穿距离与燃油SMD影响显著,气相压比为1.875时,喷嘴出口处流场基本不会产生超声速气流,气动力降低显著影响了燃油液滴破碎过程,使喷射时间在4 ms时的SMD达到40.7μm;燃油温度对喷雾贯穿距离影响不大,但对燃油SMD影响较大,燃油温度升高后燃油SMD显著减小,323 K对应的SMD比293 K时减小了12.3%,喷射时间在4 ms时的SMD达到14.9μm,燃油蒸发质量分数达到36.93%。  相似文献   

4.
采用相位多普勒粒子分析仪(PDPA)对某型航空发动机双路离心喷嘴的雾化特性进行了实验研究。PDPA可直接测得测点处的喷雾液滴的尺寸分布和速度大小,并据此求出了测点处的索特尔平均直径SMD和液滴的平均速度。在喷雾锥三个横截面上进行了测量,得到了SMD的空间分布,据此得到了喷雾锥的锥角,并与光学照相和计算机图像处理测得喷雾锥角进行了对比。实验结果表明:液滴尺寸随着供油压力的增大而减小,当压力增大到一定程度时,液滴尺寸趋于不变;当主、副油路分别单独工作时,随测量横截面与喷口之间距离Z的增加,SMD减小;在供油压力不变时,同一个测量横截面内,随着径向距离X的增加SMD值变化不大;喷雾锥角基本不随供油压力改变而变化。  相似文献   

5.
某燃气轮机空气雾化喷嘴的试验研究   总被引:1,自引:1,他引:0  
进行了某型燃机空气雾化喷嘴燃油喷雾特性的试验研究。得到以下结论:在油压不变的情况下,雾化锥角总是随着空气压力的增加有所减小,索特尔平均直径SMD随之迅速减小,整体减小幅度大约在10-30μm;气压不变时,雾化锥角和索特尔平均直径随着油压的增加而稍有增大;当气压为0.3MPa时,索特尔平均直径基本都保持在30μm以内。  相似文献   

6.
为了检验某型航空发动机燃油喷嘴改进设计效果,利用相位多普勒粒子分析仪对燃油喷嘴的雾化性能参数进行试验研究。得到雾化液滴的索太尔平均直径的空间分布、轴向平均速度、脉动速度及其湍流度的分布情况。结果表明:轴向平均速度呈凹盆状分布,脉动速度呈双峰状分布;喷雾中心湍流度大,喷雾边缘湍流度小。随着供油压力增大,在相同测试截面上,喷雾的范围和中心区域粒径变大,边缘位置粒径变小。在相同供油压力下,随着与喷嘴距离的增加,喷雾范围增大,喷雾的轴向平均速度和脉动速度减小,轴向速度的湍流度波动幅度减小。  相似文献   

7.
燃油温度对离心式喷嘴雾化性能影响   总被引:1,自引:1,他引:0  
以离心式压力雾化喷嘴为研究对象,对不同压力下燃油温度对航空煤油雾化特性的影响进行了实验测试和数值模拟研究,获得了燃油在喷嘴内的流动特性及温度、压力对燃油雾化特性参数的影响规律。实验研究了燃油温度变化范围在-20 ℃至50 ℃的雾化特性,数值模拟对燃油温度在-50 ℃至50 ℃范围内喷嘴内燃油的流动特性及燃油的雾化特性进行了数值模拟。结果表明:燃油压力对雾化特性影响不大;在所研究的温度范围内,温度增加会导致雾化角增大、索太尔平均直径(SMD)减小、周向分布不均匀性增大,在-20 ℃升至50 ℃时SMD由45 μm降低到30 μm;油膜厚度会随燃油温度的降低而增厚,有利于提高燃油周向分布均匀性,但会导致雾化液滴直径增大。  相似文献   

8.
中心分级燃烧室预燃级的喷雾特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
傅江坤  周建华  郭志辉 《推进技术》2020,41(6):1305-1313
为研究典型中心分级燃烧室预燃级的冷态喷雾特性,进行了实验研究。应用相位多普勒粒子分析仪(PDA)测量液滴的直径和速度,应用片光照相得到喷雾照片。实验结果表明:由于受到套筒结构的限制,预燃级喷雾锥角较小,一般在50°~70°,随着燃油流量和空气压降的增加,喷雾锥角增大,燃油分布范围更广,液滴数量增加,直径随之变小。预燃级的中心回流区宽度仅为20mm左右,一直延伸进套筒内,最大回流速度约为10m/s。燃油流量的改变对流场的影响十分微弱,而空气压降的增加能够明显增加流场速度和回流强度,但是工况参数的改变并不会改变回流区位置和流场结构。燃油流量的减小和空气压降的增加都会使雾化索太尔平均直径(SMD)减小,但相比之下,空气压降对雾化水平的影响更大。在各头部空气压降下,雾化SMD随着气液比(ALR)的增加而减小,但随着ALR的继续增加,平均SMD变化曲线变平缓。  相似文献   

9.
双路离心喷嘴雾化特性的实验   总被引:8,自引:4,他引:4  
采用相位多普勒粒子分析仪(PDPA)对某型航空发动机双路离心喷嘴的雾化特性进行了实验研究,得到了索太尔平均直径(d32)的空间分布和喷雾锥角.实验结果表明:液滴尺寸随着供油压力的增大而减小,当压力增大到一定程度,液滴尺寸趋于不变;当主、副油路分别单独工作时,随测量横截面与喷口之间距离Z的增加,d32减小;在供油压力不变时,同一个测量横截面内,随着径向距离X的增加d32值变化不大;喷雾锥角基本不随供油压力改变而变化.   相似文献   

10.
单涡/贫油驻涡燃烧室的出口温度分布试验   总被引:4,自引:3,他引:1  
采用试验方法对单涡贫油驻涡燃烧室的出口温度分布的影响因素进行了研究,通过分析试验数据得到如下结论:①凹腔气量对出口温度分布影响较大.随着凹腔气量的增加,出口温度分布系数(OTDF)先增加后减小,与掺混射流的穿透深度有关.②燃油掺混温度对出口温度分布的影响也较大.当燃油掺混温度较小时,出口温度分布系数较低.随着燃油掺混温度增加,出口温度分布系数随之先增加后减小.③燃油供油量对出口温度分布也有重要影响.当燃油量增加时,出口温度分布系数随之先增加后减小.   相似文献   

11.
毛羽丰  李运泽  王霁翔 《航空学报》2018,39(Z1):722184-722184
针对空间及高空环境中航天器、空天飞行器热载荷不断提升而热耗散能力低下的严峻问题,研究水喷雾在低压闪沸工况(又称过热状态)下的雾化效果,雾化效果会直接影响到喷雾的冷却效果。首先,建立了单个液滴在低压环境下由于气泡生长、气动力造成的二次雾化(液滴破裂)模型以及沸腾传质传热模型。其次,通过拉格朗日法综合喷雾中所有液滴,利用MATLAB仿真计算不同过热度对喷雾雾化及液滴温度的影响。进而分析过热度对喷雾冷却效果的影响。计算结果表明,闪沸工况下雾化效果远优于过冷状态;液滴在闪沸工况下温度总会快速趋近饱和温度;过热度越高液滴的雾化效果越好,理论上能够带来更好的冷却效果。  相似文献   

12.
为考虑喷嘴内部湍流运动对燃油雾化和火焰浮起长度的影响,将喷嘴内部的湍流流动以权重的形式加入初次破碎模型中,并对二次破碎模型进行了修正。建立了完整的燃油雾化和燃烧的数学模型。通过与实验数据对比来验证燃油雾化模型的准确性,并讨论了喷嘴内湍流运动对燃油雾化过程的影响。结果表明,湍流运动会加快液滴破碎和蒸发的速率,从而减小燃油蒸气贯穿距。火焰浮起长度的计算采用本文建立的燃油雾化模型,成功计算了火焰浮起长度随氧气体积分数、气体密度、气体温度和入射压力变化的规律。同时发现在不同气体密度和氧气体积分数的工况下,喷嘴内部湍流运动对火焰浮起长度的影响基本保持不变,分别为9%和13%;入射压力和气体温度的升高会导致喷嘴内部湍流对火焰浮起长度的影响逐渐变大。   相似文献   

13.
旋流空气对双油路离心喷嘴雾化特性影响的实验   总被引:4,自引:3,他引:1  
采用相位多普勒粒子分析仪(PDPA)对带空气旋流器的双油路离心喷嘴的雾化特性进行了实验研究,供油压力的工作范围在0.3~2.1MPa,采用轴向逆流器,旋流器叶片出口角为79°,旋流器前后空气压降在0.03~0.15MPa,实验得到了索太尔平均直径(SMD)与喷雾锥角随供油压力与风速的变化规律.结果表明:在相同供油压力下,旋流器通入空气后,喷雾锥角值较未通入旋流空气时将增大15°~20°,索太尔平均直径比未通入旋流空气时减小40%.   相似文献   

14.
往复式汽油直喷发动机燃油喷雾特性研究   总被引:2,自引:1,他引:1  
通过试验研究了高压燃油喷射系统和涡旋喷油器的喷雾特性,在不同喷射压力、背压压力和喷油持续期条件下,利用高速摄像机对喷入定体积容器的雾态燃油进行了喷雾贯穿距离、喷雾锥角、喷雾远端燃油发展速度和液滴特性等参数的测量.试验结果表明在低背压压力下,喷雾呈现出空锥、较大范围的分布形态,有利于实现燃油与空气的均质混合;然而在高背压条件下,喷雾呈现出紧凑密集的分布形态,有利于实现燃油与空气的分层混合.获得的贯穿距离经验公式与试验测量值在一定范围内是一致的.低背压条件下,涡旋形态出现在喷雾的远端,而在高背压条件下,涡旋形态出现在喷雾的中部.   相似文献   

15.
 在常压和气流速度 Va=5 0~ 90 m/s、气流温度 T=2 83~ 673K、油压 Pf=0 .2~ 0 .8MPa,下游距离 x=1 0 0~ 1 90 mm的条件下 ,对某扇形喷嘴下游燃油浓度分布的影响进行了试验研究。试验表明 ,扇形喷嘴油雾场的纵向分布呈扇形 ,横向分布与直流式喷嘴侧喷类似。当气流速度减小、气温降低、油压升高或下游距离增大时 ,都会引起燃油分布范围及穿透深度增加  相似文献   

16.
刘祺  夏津  黄忠  钱勇  具德浩 《推进技术》2021,42(2):362-371
为探究航空发动机离心式喷嘴的喷雾宏观特性,通过将该喷嘴在高温高压定容弹中进行喷雾过程的实验,并结合阴影法与纹影法进行光学测量。首先以水作为射流工质,观察不同喷射压力下水进入大气环境中的雾化角变化,发现喷嘴结构对雾化角有着重要影响,最大雾化角与喷嘴出口的导流结构夹角相等。其次以正癸烷作为工质,通过不同环境压力和温度下的多组实验测量其它喷雾宏观特性如液膜破碎长度,结果表明在背压大于1.75MPa的工况下,该离心式喷嘴无法形成清晰稳定的锥形喷雾结构,此外还揭示了高背压加强了气动力而高环境温度减小了表面张力和粘性力,两者都起着促进雾化的作用。  相似文献   

17.
王健  王家骅 《航空动力学报》1992,7(3):272-274,293
本文利用脉冲激光全息技术测量了直流喷嘴侧喷下游的高密度喷气燃料和常规喷气燃料的油雾场。获得了各种油滴直径,索太尔平均直径及燃油浓度的空间分布规律,讨论了气流速度、燃油出口压降对油雾场的影响,并对两种燃料的油雾场进行了比较。   相似文献   

18.
为了研究吸热型碳氢燃料在新型飞行器中的再生冷却性能,采用电加热方式,在热流密度0.1-1.0MW/m2和质量流速500-1000kg/m2s条件下,小通道圆管内(D=1.6mm)研究了超(近)临界压力下(P=3MPa)航空煤油RP-3的拟沸腾流动传热特性。研究发现了超(近)临界压力航空煤油的拟过冷沸腾传热现象。拟过冷沸腾壁温变化特征和传热恶化特征与亚临界压力下的相应特征存在差异。超临界压力航空煤油传热区域划分为类液态强制对流传热区、拟过冷沸腾区和类气态强制对流传热区。拟过冷沸腾壁温和传热系数随流体温度增加而缓慢增加,起到传热强化的作用;拟临界温度区域,存在传热系数极小值点,燃料发生传热弱化;燃料温度大于拟临界温度,燃料处于超临界类气态,传热大幅强化。  相似文献   

19.
针对某型跨声速压气机转子的失速边界工况,采用数值模拟方法系统研究了不同加湿条件对其性能的影响。获得了水滴粒径、速度、温度和喷水量与转子进气流量、压比、效率、比压缩功等性能参数之间的关系曲线。结果表明:在失速边界上对跨声速压气机进气加湿,可以增加空气流量,提高总压比和效率,降低比压缩功。通过对流场的分析,发现进气加湿后,向低能区注入了高动量的水滴颗粒,削弱叶顶阻塞团,将主流与泄漏流交界面和激波位置向下游推进,减小激波强度,降低叶顶载荷,增大主流区载荷,改善了叶顶流场。提出了以水滴的面积流量定量评价不同进气加湿条件对叶顶流场的作用效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号