首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The interaction between the solar wind and Mercury is anticipated to be unique because of Mercury’s relatively weak intrinsic magnetic field and tenuous neutral exosphere. In this paper the role of the IMF in determining the structure of the Hermean magnetosphere is studied using a new self-consistent three-dimensional quasi-neutral hybrid model. A comparison between a pure northward and southward IMF shows that the general morphology of the magnetic field, the position and shape of the bow shock and the magnetopause as well as the density and velocity of the solar wind in the magnetosheath and in the magnetosphere are quite similar in these two IMF situations. A Parker spiral IMF case, instead, produces a magnetosphere with a substantial north–south asymmetric plasma and magnetic field configuration. In general, this study illustrates quantitatively the role of IMF when the solar wind interacts with a weakly magnetised planetary body.  相似文献   

2.
Results of the optical observations of Mercury and the Moon confirm the close similarity of photometric properties of the bodies. Undoubtedly, the surface of Mercury, which is subjected to the same processes, is covered by a mantle of shattered rocks – the regolith. The structure of the reflecting layer determines the photometric and polarization characteristics of the surface of a planetary body. Despite the general similarity of the integral optical properties of the surfaces of Mercury and the Moon, specific characteristics of the media of these celestial bodies manifest themselves as identifiable differences in the details of the measured parameters: Mercury’s regolith is smoother than of the Moon, probably contains a greater fines fraction, and has greater maturity.  相似文献   

3.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

4.
Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury’s tenuous atmosphere and (2) the reflectance spectrum of Mercury’s surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30–150 nm with the field of view of 5.0°, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics.  相似文献   

5.
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions.  相似文献   

6.
Since the flyby observations by Mariner 10 in 1974 and 1975, Mercury has been one of the most interesting objects for space physics and planetary exploration. The MESSENGER and BepiColombo missions now plan to revisit this planet. In order to design plasma instruments for the BepiColombo mission, we have estimated electron and ion fluxes around Mercury with an empirical model, which has been developed for the Earth’s magnetotail. The solar wind data needed as input parameters are derived from Helios observations. The result shows that our predicted electron fluxes at aphelion agree well with the Mariner-10 data. It is also noted that ion instruments must cover a very wide dynamic range of proton fluxes. However, the applicability of the Earth’s magnetospheric model to Mercury is, in itself, an important issue for comparative magnetospheric studies.  相似文献   

7.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   

8.
A consideration is given to the generation of field-aligned currents under different solar wind conditions. The preliminary results from a set of resistive MHD calculations indicate that the field-aligned current system could be significantly changed by the orientation of the interplanetary magnetic field. For most of the cases studied, the total current is less than or on the order of 105 A. Even though this current is at least a factor of 10 smaller than its counter part at Earth, it might still produce some important dynamical effects with interesting consequence on the sporadic behavior of Mercury’s atomic sodium emission.  相似文献   

9.
Bepi Colombo is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of particle sensors will be flown onboard the two probes that form Bepi Colombo. These sensors will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Onboard the Mercury Magnetospheric Orbiter (MMO) the Mercury Electron Analyzers (MEA) sensors constitute the experiment dedicated to fast electron measurements between 3 and 25,500 eV. They consist of two top-hat electrostatic analyzers for angle-energy analysis followed by microchannel plate multipliers and collecting anodes. A notable and new feature of MEA is that the transmission factor of each analyzer can be varied in-flight electronically by a factor reaching up to 100, thus allowing to largely increasing the dynamical range of the experiment. This capability is of importance at Mercury where large changes of electron fluxes are expected from the solar wind to the various regions of the Mercury magnetosphere. While the first models are being delivered to JAXA, an engineering model has been tested and proven to fulfill the expectations about geometrical factor reduction and energy-angular transmission characteristics. Taking advantage of the spacecraft rotation with a 4 s period, MEA will provide fast three-dimensional distribution functions of magnetospheric electrons, from energies of the solar wind and exospheric populations (a few eVs) up to the plasma sheet energy range (some tens of keV). The use of two sensors viewing perpendicular planes allows reaching a ¼ spin period time resolution, i.e., 1 s, to obtain a full 3D distribution.  相似文献   

10.
The Institute of Space and Astronautical Science (ISAS) of Japan plans to contribute the Mercury Magnetospheric Orbiter (MMO) to the BepiColombo program, the ESA Cornerstone mission to the planet Mercury. The principal objective of the MMO is to study the magnetic field and magnetosphere of Mercury. The ISAS Mercury exploration working group has performed the definition study of the MMO mission in cooperation with the ESA/ESTEC BepiColombo project team. This paper briefly reviews the scientific objectives, and describes the model payload and its operation plan.  相似文献   

11.
Using ground-based magnetometer data of the April 6–7, 2000, superstorm, we obtained maps of ionospheric and field-aligned currents (FACs). Based on these, we deduced the electrical circuit of the disturbed magnetosphere/ionosphere and a conceptual model of its magnetospheric generators, which supply both hemispheres. This model implies that the generator system creates primarily the Region-1 FACs of Iijima and Potemra at both hemispheres, while the Region-2 and Region-0 FACs form by spreading of the Region-1 currents through the ionosphere. This conclusion is supported by observations.  相似文献   

12.
In this paper, we discuss our first attempts to model the broadband persistent emission of magnetars within a self-consistent, physical scenario. We present the predictions of a synthetic model that we calculated with a new Monte Carlo 3D radiative code. The basic idea is that soft thermal photons (e.g. emitted by the star surface) can experience resonant cyclotron upscattering by a population of relativistic electrons treated in the twisted magnetosphere. Our code is specifically tailored to work in the ultra-magnetized regime; polarization and QED effects are consistently accounted for, as well different configurations for the magnetosphere. We discuss the predicted spectral properties in the 0.1–1000 keV range, the polarization properties, and we present the model application to a sample of magnetars soft X-ray spectra.  相似文献   

13.
We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/).The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.  相似文献   

14.
BepiColombo is scheduled for launch in August 2013 and to arrive after a nearly six-year long transfer at Mercury in June 2019. The trajectory has a number of challenging elements: a launch with Soyuz/Fregat into a geostationary transfer orbit, followed by a lunar flyby, long low-thrust arcs and five more planetary flybys (one at the Earth, two at Venus and two at Mercury). At arrival the low thrust arcs reduce the approach velocity so much that BepiColombo passes by the Sun–Mercury Lagrange points L1 and L2 and gets weakly captured in a highly eccentric orbit around Mercury in case the orbit insertion manoeuvre would fail.This paper describes the navigation strategy during the final phase. Five trajectory correction manouevres during the last 65 days requiring up to 20 m/s (3σ) are proposed. With this strategy it is possible to navigate BepiColombo safely through the weak-stability boundary of Mercury and to reach the target periherm with a precision of 11 km.  相似文献   

15.
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems.  相似文献   

16.
The study of the dynamics and thermodynamics of the earth's upper atmosphere has made significant progress over the past few years owing to the availability of new global-scale data sets from the Dynamics Explorer satellites. The thermospheric wind and temperature fields at high latitude have been observed to depend strongly on forcing processes of magnetospheric origin. A key momentum source is due to the drag effect of ions convecting in response to electric fields mapped down on the ionosphere from magnetospheric boundary regions. Likewise, an important heat source derives from Joule or frictional dissipation due to ion/neutral difference velocities governed, in turn, by magnetospheric forcing. In this paper we discuss the progress made over the last 2–3 years initiated by the new satellite measurements and we review published data on ion and neutral motions in the context of the energy and momentum coupling between the magnetosphere and the ionosphere/neutral upper atmosphere. The observations indicate the existence of a “flywheel effect” which implies direct feedback from the neutral thermosphere to the magnetosphere via the release of energy and momentum previously “stored” in the neutral thermosphere.  相似文献   

17.
Foreshock is a special region located upstream of the Earth’s bow shock characterized by the presence of various plasma waves and fluctuations caused by the interaction of the solar wind plasma with particles reflected from the bow shock or escaping from the magnetosphere. On the other hand, foreshock fluctuations may modify the bow shock structure and, being carried through the magnetosheath, influence the magnetopause. During the years 1995–2000, the INTERBALL-1 satellite made over 10,000 hours of plasma and energetic particles measurements in the solar wind upstream of the Earth’s bow shock. We have sorted intervals according to the level of solar wind ion flux fluctuations and/or according to the flux of back-streaming energetic protons. An analysis of connection between a level of ion flux fluctuations and fluxes of high-energy protons and their relation to the IMF orientation is presented.  相似文献   

18.
Waves in the Ultra Low Frequency (ULF) band owe their existence to solar wind turbulence and transport momentum and energy from the solar wind to the magnetosphere and farther down. Therefore an index based on ULF wave power could better characterize solar wind–magnetosphere interaction than KP, Dst, AE, etc. indices which described mainly quasi-study state condition of the system. We have shown that the ULF wave index accurately characterize relativistic electron dynamics in the magnetosphere as these waves are closely associated with circulation, diffusion and energization of relativistic electrons in the magnetosphere. High speed solar wind streams also act as a significant driver of activity in the Earth’s magnetosphere co-rotating interaction region and are responsible for geomagnetic activities. In the present paper, we have analyzed various cases related with very weak (quiet) days, weak days, storm days and eclipse events and discussed the utility of the ULF wave index to explain the magnetospheric dynamics and associated properties. We have tried to explain that the ULF wave index can equally be useful as a space weather parameter like the other indices.  相似文献   

19.
The occurrence characteristics of medium-scale travelling ionospheric disturbances (MSTIDs) were investigated using the Tasman International Geospace Environment Radar (TIGER). From the occurrence study of sea echoes, we found two maxima, one pre-noon and the other after noon. They are less obvious with increase of magnetic activities, and more obvious when Bz is northwards. It is suggested that this maxima were related to fore- and after-noon maxima in the distribution of net field-aligned currents flowing from the magnetosphere to the ionosphere, and that these two regions were sources of atmospheric gravity waves (AGWs) due to enhancement of Hall conductivities in the ionosphere. The Lorentz force is suggested to be a possible mechanism for the excitation of MSTIDs in the dayside ionosphere.  相似文献   

20.
The magnetic field in many astrophysical plasmas – such as the solar corona and Earth’s magnetosphere – has been shown to have a highly complex, three-dimensional structure. Recent advances in theory and computational simulations have shown that reconnection in these fields also has a three-dimensional nature, in contrast to the widely used two-dimensional (or 2.5-dimensional) models. Here we discuss the underlying theory of three-dimensional magnetic reconnection. We also review a selection of new models that illustrate the current state of the art, as well as highlighting the complexity of energy release processes mediated by reconnection in complicated three-dimensional magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号