首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在液氢冷却的火箭燃烧室里,对高深宽比(槽高比槽宽)冷却通道的冷却效果进行了分析研究。对不同的冷却通道设计在燃气侧壁温和冷却剂压降方面的影响进行了评估。冷却剂通道的设计,包括燃烧室应用高深宽比冷却通道的长度、冷却剂通道的数量和冷却剂通道的形状。用火箭热计算(RTE)规则二维动力学(TDK)规则对七种冷却剂通道进行了联合研究。最初研制的每种冷却通道没有考虑制造因素,只考虑减少来自常规冷却通道的燃气侧壁温。这些设计产生的燃气侧壁温比给定基础下降了22%,冷却剂压降只在原基础上提高了7.5%。七种设计的冷却通道都用铣加工制造。制造后产生的燃气侧壁温比给定的基础降低了20%,冷却剂压降增加不到2%。在整个燃烧室长度上都用高深宽比冷却通道的设计在燃气侧壁上得到的好处,并没有超过只在喉部区域使用高深宽比冷却通道的设计,但冷却剂压降却增加了33%。高深宽比冷却通道在冷却压降增加不到2%的条件下,至少可以降低燃气侧壁温8%,这与冷却通道的形状无关。在降低燃气侧壁温方面得到的好处最大,且冷却剂压降增加最小的设计是采用分叉冷却通道,并在喉部区域采用高深宽比冷却通道的设计。  相似文献   

2.
高深宽比冷却通道的流动与传热数值分析   总被引:1,自引:0,他引:1  
本文描述了一个火箭发动机高深宽比冷却通道三维流动和传热分析程序。该程序是建立在抛物线化的纳维尔一斯托克斯方程基础之上的,将其流动和传热计算结果与文献中找到的测量数据进行比较,表明该程序是有效的。计算是针对实际压力为100巴的发动机冷却通道内的流动进行的。计算出的冷却剂温升和压降值和实验结果符合良好。参数分析给出了湍流强度、壁面粗糙度、传热边界条件和近壁流动模型的影响。可以看出,本程序能够成功用于火箭发动机冷却通道内三维的流动和传热分析,它高效地利用 CPU 时间,而且用它来帮助设计现在或是将来的火箭发动机燃烧室将是很方便的。  相似文献   

3.
为了探索多孔介质冷却通道在液体火箭发动机燃烧室中的应用,采用金属粉末烧结法制备了多孔介质,设计了多孔介质通道的流阻和传热特性测试装置,建立了采用多孔介质冷却通道的燃烧室传热预测模型,对具有不同结构参数的多孔介质进行了研究。结果表明:随着孔隙率的增大,多孔介质通道的流阻逐渐减小,换热能力逐渐下降;基于传热模型的预测结果与试验有一定偏差,最大达到25%;相较铣槽通道,多孔介质冷却通道能够在燃烧室中获得更好的热防护效果。  相似文献   

4.
液氧/煤油发动机高压推力室采用了多条液膜冷却环带技术。由于室压高和热流密度大,易出现冷却环带结构局部过热现象,局部过热(甚至局部烧蚀)有时发生在燃烧室收缩段的冷却环上沿。传热计算和对比分析表明,在降低边区混合比的同时,第一冷却环带流量增大25%,可使过热处气壁温下降约35℃。采取增加冷却环带流量、降低燃烧室边区混合比、改善液膜冷却局部喷注结构等措施有利于燃烧室壁面的热防护,可防止局部过热的发生。  相似文献   

5.
高翔宇  孙纪国  田原 《火箭推进》2013,39(4):19-23,51
为了研究火箭发动机推力室冷却通道内的甲烷传热和流阻特性,研制了缩比推力室甲烷传热试验系统,并以推力室挤压热试验的形式进行了5次超临界甲烷传热试验和2次亚临界甲烷传热试验研究.超临界甲烷传热试验燃烧室压力为5.5~7.5 MPa,燃烧室氢氧混合比约为6.8,甲烷温度为128~230 K,甲烷冷却剂流量为5~7 kg/s,甲烷冷却剂入口压力为8.3~11.7 MPa.亚临界甲烷传热试验的室压约为4 MPa,氢氧混合比2.8,甲烷温度为:128~189 K,甲烷冷却剂流量约为2.9 kg/s,甲烷入口压力为3~3.5 MPa.通过试验研究获得了液态甲烷在推力室冷却通道内超临界压力状态和亚临界压力状态下的传热和流阻特性.  相似文献   

6.
针对液氧煤油发动机高室压推力室冷却技术,讨论了多条内冷却环带、人为粗糙度、内壁铣槽结构和隔热镀层等主要技术措施。对带人为粗糙度的平直通道内流动进行了二维和三维时均流数值模拟,分析了人为粗糙度局部强化换热机理。对多条液气膜冷却环带进行了数值模拟,分析了内冷却流量对冷却的影响。研究结果表明,合理设置人为粗糙度和采用冷却环带技术可有效降低推力室局部气壁温,以煤油为冷却剂的高压推力室冷却方案应以再生冷却结合多条液气膜冷却技术为主,综合采取人为粗糙度、高导热材料、隔热镀层等技术措施。  相似文献   

7.
针对膨胀循环发动机推力室身部燃气侧的内壁增强换热结构和冷却剂侧的冷却通道结构这两个影响推力室身部换热最关键的结构分别进行多种结构下的数值模拟对比。通过分析各结构的模拟结果,得到了能够合理提高推力室身部换热能力的内壁加肋结构和圆柱段冷却通道深宽比的结构特征。  相似文献   

8.
张萌  孙冰 《火箭推进》2021,47(2):19-26
为了提高液氧/甲烷发动机再生冷却通道中冷却剂的吸热效率,同时提高该区域的热防护能力,对带有4种不同肋结构的推力室进行了三维稳态耦合传热计算。分析结果表明,在推力室燃气侧壁面设置纵向肋之后,通过引入等效平均热流密度能够描述带肋发动机推力室壁面的实际换热特征。设置人工粗糙度能够使壁面温度降低85.4 K,但会使压降增大0.11 MPa。设置纵向肋则使冷却剂温升提高24.2 K,但同时壁面温度升高276.4 K。此外,虽然人工粗糙度能促进流体之间的传热进而使冷却剂温度分层有所削弱,但由于壁面温度较低导致靠近通道底部处的流体温度明显较低,因此冷却剂温升并没有明显提高。  相似文献   

9.
燃烧室缝槽气膜冷却方案研究   总被引:1,自引:0,他引:1  
针对超音速飞行器冲压发动机高马赫数、长航时的特点,结合工程计算方法和设计思想,建立了燃烧室缝槽气膜冷却过程一维计算模型,详细研究了各主要因素对气膜冷却效果的影响,并给出了某型冲压发动机高温燃烧室缝槽气膜冷却结构参考设计方案。结果表明,通过改善结构布局,合理分配缝隙冷气流量,可以有效地提高气膜冷却效果、降低壁温,适应高温燃气参数分布对隔热屏的热防护要求。  相似文献   

10.
韩长霖  田原 《火箭推进》2020,46(1):28-34
为了研究冷却剂的流动方向和推进剂的质量流量对推力室燃烧和传热过程带来的影响,以某型氢氧火箭发动机的推力室缩比试验件为研究对象,对推力室的燃烧和传热过程进行了数值仿真。改变冷却剂的流动方向,最高壁面温度相差1.04%,最高壁面热流密度相差0.544%,冷却剂温升相差0.233%,出口压力相差3.803%,分析发现,改变冷却剂的流动方向,对推力室内部的燃烧过程和壁面传热效率影响很小,冷却剂的流动方向会影响壁面温度分布。推进剂质量流量提升22.29%,室压提升22.17%,燃烧效率降低0.55%,最高壁温提升9.16%,最高热流密度提升17.48%,冷却剂温升提高13.05%,分析发现,提升推进剂质量流量会导致推力室壁面温度和冷却剂温升的提高,由于缩比发动机反应空间小燃烧不够充分,提升推进剂质量流量会使燃烧效率有所下降。  相似文献   

11.
为提高液体火箭发动机推力室再生冷却通道的冷却效率,对液氧/甲烷发动机推力室变截面冷却通道的耦合传热进行数值模拟,探究了冷却通道的高宽比对跨临界甲烷的湍流流动和对流传热的影响。燃气-冷却通道-冷却剂的三维耦合计算采用一种改进的迭代耦合方法。研究结果表明:在冷却通道横截面积不变时,增大冷却通道高宽比可以降低喉部燃气侧壁面最高温度。冷却通道的高宽比越大,冷却剂压力损失越大。但过大的高宽比会导致压力损失急剧增大,且进一步降低喉部壁面最高温度的效果不明显。燃气侧壁面温度在变截面冷却通道的突扩突缩处出现局部下降,且下降幅度会随着高宽比的减小而增加。大高宽比冷却通道中,喉部侧壁面附近发生传热恶化的范围有限,主要在肋侧壁面附近的下半部分。研究结果为推力室变截面再生冷却通道的设计提供了参考。  相似文献   

12.
氢氧推力室再生冷却内壁故障分析   总被引:2,自引:0,他引:2  
对某氢氧火箭发动机在热试车后推力室再生冷却通道内壁产生裂纹的故障建立了理论分析模型,并进行了温度场与应力场的耦合计算分析。分析认为,推力室内壁在连续的发动机热试车中出现故障的机理为较大的热载荷和机械载荷的组合促使推力室内壁的组合应力超过当地的屈服极限,产生较大的塑性变形所致。采用改善冷却通道的结构形式、燃烧室内壁采用适当厚度的隔热镀层、降低推力室内壁应力比R等措施可以提高再生冷却推力室的热循环寿命。  相似文献   

13.
周伟 《火箭推进》2015,41(2):63-69
为了研究某膨胀循环氢氧发动机推力室冷却结构流场分布特性,进行了单根冷却通道和完整冷却通道结构的三维CFD分析。仿真计算过程中,以单根通道模型的仿真结果作为完整通道结构模型流场仿真分析的边界条件之一,并考虑了材料物性参数随温度或压力的变化。分析结果表明:1)仿真预测的温升、压降与热试验实测值吻合,该推力室冷却通道流量相对偏差范围为-4.8%~6.6%,由此造成喉部气壁温的环向偏差为33 K;2)集合器管内流体的环向流动压差、法兰起分流或汇聚作用时拐弯效应形成的压力波动是造成冷却通道流量不均匀分布的主要原因,出口集合器内的压力分布对通道流量分布起主要作用;3)提高通道流量均匀性的措施可以从增大出口集合器管径或采用变管径设计、采用扩口型法兰并设置弧形导流片、集合器的进、出口法兰布置在同一环向位置等方面进行考虑。  相似文献   

14.
针对大型液体火箭发动机喷管几何尺寸大、廓形复杂、结构刚度低致使其冷却通道加工质量难以保证的难题,提出一种集“测量-数据处理-铣槽”于一体的喷管冷却通道数字化加工新方法,并在开放式数控平台上开发出喷管专用数字化铣槽加工系统。该方法利用喷管几何外廓的实际测量信息再设计出槽底曲面,进而实现高次曲线或参数曲线廓形、变壁厚变槽深喷管冷却通道的数字化加工。通过某型号火箭发动喷管的实际加工,表明所研制的双通道立式铣槽加工专用装备与系统可满足我国新一代大推力液体火箭发动机喷管冷却通道高质量、高效、高可靠的制造要求。
  相似文献   

15.
为了提高液体火箭发动机传热计算精度,建立了再生冷却推力室准二维传热计算的通用方法。冷却通道内考虑了冷却剂层间导热导致的温度分层效应,燃气侧对流换热既可采用传统Bartz公式,又可直接求解边界层控制方程得到热流密度,最终基于MATLAB开发完成了通用的再生冷却推力室准二维传热程序。利用该程序对某氢氧发动机进行了传热计算,并与一维传热程序和三维CFD传热计算结果进行了对比,结果表明:准二维传热计算方法可以计算出冷却通道内温度分层情况,冷却剂温升、流阻计算值与热试数据吻合较好,误差在10%以内,优于一维传热结果,验证了计算方法的有效性;直接求解边界层控制方程得到的热流密度与三维计算结果吻合较好;准二维传热计算时间短,效率高。  相似文献   

16.
讨论作为液体火箭推力室再生冷却剂的烃类燃料的冷却性、结焦特性和积碳效应,概述近期国内外有关试验情况.燃料的冷却性由其自身的物理性质(比热、导热系数、粘度)所决定,反映燃料传热性能的好坏.烃类燃料作为冷却剂具有在冷却通道壁面产生结焦的倾向,这是推力空冷却设计需要考虑的一个问题.液氧/烃推进剂燃烧生成的积碳,对高温燃气向推力宣壁传热起隔热作用,能有效地降低推力室热流、壁温和冷却液温升,提高冷却余度.  相似文献   

17.
董飞  何国强 《火箭推进》2007,33(3):43-46
介绍了液体火箭发动机推力室铣槽结构热应力的数值分析方法,通过建立液体火箭发动机推力室的流场燃烧和导热理论模型,运用有限体积法考虑液膜冷却计算出发动机工作时的燃气、燃烧室壳体和冷却工质的温度场,将得出的结果作为壳体热应力计算模型的边界条件进行热应力场有限元分析。内、外壁温度的计算数据与实验结果基本相符。  相似文献   

18.
小推力发动机膜冷却工程算法研究   总被引:1,自引:0,他引:1  
马丁  张黎辉 《火箭推进》2007,33(2):20-25
为满足工程上对推力室内部传热流动分析的要求,应用分层流动理论,结合半经验传热和化学反应平衡模型,建立了分析小型液体火箭发动机推力室膜冷却的传热模型。以气氧/煤油发动机为例,初步实现了对定常情况下膜冷却过程的模拟。计算表明,冷却剂的质量分数,燃气的流动状态,喷注器尺寸等因素对冷却效果和发动机总体性能有重要影响。研究结果可为新一代小型液体火箭发动机的研制提供参考。  相似文献   

19.
采用主动冷却方式对超燃冲压发动机进行热防护是解决其长时间工作的有效措施。针对超燃冲压发动机燃烧室恶劣的热环境,设计了一种基于碳化硅陶瓷基复合材料的主动冷却结构,建立了发动机主动冷却结构设计的数学模型。引入发动机冷却液流量系数,从飞行器整体热防护角度出发,以发动机燃烧室主动冷却结构中冷却液的出口温度为依据来评价超燃冲压发动机可以达到的最大工作马赫数,以及分析发动机冷却液流量系数、飞行高度和燃烧室化学反应当量比对最大工作马赫数的影响。结果表明,增加冷却液流量系数、适当降低飞行高度、一定范围内提高化学反应当量比,可降低冷却液出口温度,从而提高发动机的最大工作马赫数。  相似文献   

20.
美国喷气公司成功地进行了推力为400N 的 LTRE400N 液体火箭发动机的热试车工作。该液体火箭发动机的价格仅为西方国家生产的同等推力液体火箭发动机价格的10%。LTRE400N 液体火箭发动机是俄罗斯研制的,且其燃烧室采用氧化剂(N_2O_4)进行液膜冷却。这种方法在西方国家的液体火箭发动机上未使用过,他们只是用燃料来冷却燃  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号