首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia.  相似文献   

2.
This study employed a rat tail-suspension model to investigate the effects of simulated weightlessness on the intestinal mucosal barrier. Twenty-four Wistar rats were randomly divided into control (CON), 14-day tail-suspension (SUS-14d), and 21-day tail-suspension (SUS-21d) groups (n = 8 per group). Expression of occludin and zonula occludins-1 (ZO-1), proteins of the tight junction (TJ), in the intestinal mucosa was measured by immunohistochemical analysis, Western blotting, and mRNA fluorescent quantitation PCR. Plasma concentrations of diamine oxidase (DAO) and d-lactate were determined using an enzymatic spectrophotometric assay. Expression of occludin and ZO-1 was reduced in the SUS-14d and SUS-21d groups as compared to the CON group, with lowest expression observed in the SUS-21d group (P < 0.01). Examination by transmission electron microscopy (TEM) of the jejunal epithelium revealed increased intercellular space, decreased TJ and desmosome densities, and destruction of microvilli in the SUS-14d and SUS-21d groups. Plasma DAO and d-lactate concentrations in the SUS-21d group were higher than those in SUS-14d group and significantly higher than those in the CON group (P < 0.01). In all three groups, the expression of occludin and ZO-1 was found to correlate negatively with DAO (P < 0.01) and d-lactate (P < 0.01) concentrations. It is concluded that simulated weightless results in down-regulation of expression of TJ proteins in the rat intestinal mucosa. Simulated weightlessness is proposed to increase intestinal permeability through damage to the TJ.  相似文献   

3.
Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.  相似文献   

4.
Plant growth, development and embryogenesis during Salyut-7 flight.   总被引:1,自引:0,他引:1  
The growth and geotropic movements of roots and hypocotyls of lettuce have been studied on board the Salyut 7 station in a stationary position and on the centrifuge at 0.01, 0.1 and 1 g. On the centrifuge at 0.1 and 0.01 g as well as under weightlessness, the final length of hypocotyls was by 8-16% greater than in control plants on the centrifuge at 1 g. The length of roots, however, was reduced by 17% at 0.01 g and under weightlessness; at 0.1 g their growth is much the same as at 1 g. On the Earth, while growing in a vertical position, and in space at 0 < or = g, the roots and hypocotyls deviate from the longitudinal axis of the seed. Average values of deviation eagles on the Earth are always equal to zero, while this is not always the case in space, which indicates the biological effect of microgravity conditions on board a spacecraft. The threshold of geotropic sensitiveness of lettuce hypocotyls, calculated from the linear regression parameters of the dependence of the response geotropic reaction upon the value of the centrifugal force, comprised 2.9 x 10(-3) g. In the Fiton 3 micro-greenhouse under spaceflight conditions, the plants of Arabidopsis thaliana (L) Heynh have, for the first time, undergone a full cycle of individual development. The seeds sown during the flight germinated, performed growth processes, formed vegetative and generative organs and, judging by the final result, they succeeded in fecundation, embryogenesis and ripening. Despite the noted modification of growth and development of plants in space, 42% of formed seeds appeared to be valuable biologically.  相似文献   

5.
The mutant strain (ha) of medaka (Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (F1 generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the F1 generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.  相似文献   

6.
7.
Primordial germ cells (PGCs), precursors of germline cells, display a variety of antigens during their migration to target gonads. Here, we used silk chicken offspring (Gallus gallus domesticus) embryos subjected to space microgravity to investigate the influence of microgravity on PGCs. The ShenZhou-3 unmanned spaceship carried nine fertilized silk chicken eggs, named the flight group, returned to Earth after 7 days space flight. And the control group has the same clan with the flight group. PGCs from flight and control group silk chicken offspring embryos were examined during migration by using two antibodies (2C9 and anti-SSEA-1), in combination with the horseradish peroxidase detection system, and using periodic acid-Schiff’s solution (PAS) reaction. After incubation for about 30 h, SSEA-1 and 2C9 positive cells were detected in the germinal crescent of flight and control group silk chicken offspring embryos. After incubation of eggs for 2–2.5 days, SSEA-1 and 2C9 positive cells were detected in embryonic blood vessels of flight and control group silk chicken offspring embryos. After incubation of eggs for 5.5 days, PGCs in the dorsal mesentery and gonad could also be identified in flight and control group silk chicken offspring embryos by using SSEA-1 and 2C9 antibodies. Based on location and PAS staining, these cells were identified as PGCs. Meanwhile, at the stage of PGCs migration and then becoming established in the germinal ridges, no difference in SSEA-1 or 2C9 staining was detected between female and male PGCs in flight and control group silk chicken offspring embryos. Although there were differences in the profiles of PGC concentration between male and female embryos during the special circulating stage, changing profile of PGCs concentration was similar in same sex between flight and control group offspring embryos. We concluded that there is little effect on PGCs in offspring embryos of microgravity-treated chicken and that PGC development appears to be normal.  相似文献   

8.
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805–0.0831 L kg−1 h−1 and the level of CO2 emission was 0.0705–0.0736 L kg−1 h−1; O2 consumption by the two trial volunteers was 19.71 L h−1 and the volume of respiration-released CO2 was 18.90 L h−1. Under 7000–8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.  相似文献   

9.
Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.  相似文献   

10.
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.  相似文献   

11.
The purpose of the research is to develop a photo-bioreactor which may produce algae protein and oxygen for future astronauts in comparatively long-term exploration, and remove carbon dioxide in a controlled ecological life support system. Based on technical parameters and performance requirements, the project planning, design drafting, and manufacture were conducted. Finally, a demonstration test for producing algae was done. Its productivity for micro-algae and performance of the photo-bioreactor were evaluated. The facility has nine subsystems, including the reactor, the illuminating unit, the carbon dioxide (CO2) production unit and oxygen (O2) generation unit, etc. The demonstration results showed that the facility worked well, and the parameters, such as energy consumption, volume, and productivity for algae, met with the design requirement. The density of algae in the photo-bioreactor increased from 0.174 g (dry weight) L−1 to 4.064 g (dry weight) L−1 after 7 days growth. The principle of providing CO2 in the photo-bioreactor for algae and removing O2 from the culture medium was suitable for the demand of space conditions. The facility has reasonable technical indices, and smooth and dependable performances.  相似文献   

12.
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf–vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10−4 g2 m−3 J−1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.  相似文献   

13.
Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO2 or N2) and oxygen at various mixture ratios. Total ambient pressure (P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO2 laser (10 W total; 21.3 W/cm2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO2) and normalized ambient pressure (P/P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101–40 kPa), the required ppO2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called “explosion peninsula” as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.  相似文献   

14.
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.  相似文献   

15.
Based on the electron density (Ne) and temperature (Te) data from DEMETER, the ionospheric perturbations before 82 Ms ? 7.0 earthquakes (EQs) during 2005–2010 were studied, using moving median and space difference methods within 10 days before and 2 days after these events in local nighttime. It was found that the plasma parameters disturbances appeared before 49 EQs, in which more disturbances were detected before shallow-focus earthquakes than deep ones, and there was little difference between continental and oceanic ones, both exceeding 1/2 percentage. For the disturbed time, more perturbations were seen in 1, 3, 5, 6, 8 days before EQs and 1 day after EQs. For the spatial distribution, the anomalies before EQs were not just above the epicenters, but shifted equatorward with several degrees to almost twenty degrees. Most of the abnormities were positive ones, which demonstrate that Ne increases before EQs at the altitude of 670 km of DEMETER. Perturbations of Ne were more than that of Te, which illustrates that Ne is much more sensitive to seismic activity than Te.  相似文献   

16.
We present results on the analysis of 100 mL medium samples extracted from sterilized foam (Smithers-Oasis, Kent OH) used to support the growth of a representative dicotyledon (Haplopappus gracilis) and a representative monocotyledon (Hemerocallis cv Autumn Blaze) in NASA’s Plant Growth Unit (PGU) during a 5-day Space Shuttle flight and ground experiments. At recovery, the media remaining within replicate (n = 5) foam blocks (for both the spaceflight and ground experiments) were extracted under vacuum, filtered and subjected to elemental analyses. A unique aspect of this experiment was that all plants were either aseptically-generated tissue culture propagated plantlets or aseptic seedling clones. The design of the PGU facilitated the maintenance of asepsis throughout the mission (confirmed by post-flight microbial sampling) and thus any possible impact of microorganisms on medium composition was eliminated. Concentration levels of some elements remained the same, while some decreased and others increased. There was a significant two-fold difference between the final concentrations of potassium when the Earth-based and microgravity experiments were contrasted.  相似文献   

17.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   

18.
This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop’s solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m2 vs. 41 g/m2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.  相似文献   

19.
20.
Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia (Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom (Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences (P < 0.05) were observed in weight gain, specific growth rate, survival rate, daily consumption, and food conversion ratio between tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号