首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiosonde data available from British Atmospheric Data Centre (BADC) for the latitudinal occupancy of 58° north through 45° south were analyzed to observe the variation of temperature and water vapor density. These two climatological parameters are largely assumed to be the influencing factors in determining the millimeter wave window frequencies over the chosen range of latitudes in between the two successive maxima occurring at 60 and 120 GHz. It is observed that between temperature and water vapor density, the later one is influencing mostly in determining the window frequency. It is also observed that the minima is occurring at 75 GHz through 94 GHz over the globe during the month January–February and 73 GHz through 85 GHz during the month July–August, depending on the latitudinal occupancy. It is observed that the large abundance of water vapor is mainly held responsible for shifting of minima towards the low value of frequencies. Hence, it is becoming most important to look at the climatological parameters in determining the window frequency at the place of choice.  相似文献   

2.
The objective of this study is to investigate cloud attenuation at 30 GHz frequency using ground-based microwave radiometric observations at a tropical location, Kolkata. At higher frequencies and lower elevation angles, cloud attenuation is of major concern at a tropical location. The location experiences high value of liquid water path (LWP), which is responsible for cloud attenuation, during the Indian summer monsoon (ISM) and pre-monsoon season. Significant amount of cloud attenuation has been observed during monsoon season at 30 GHz. Two years observations of exceedance probability of cloud attenuation and worst month statistics are presented. The variation of cloud attenuation with frequencies for different elevation angles has also been investigated. The seasonal and diurnal patterns of cloud attenuation are examined. Cloud attenuation, inferred from radiometric measurements before rain commencement, has been compared to rain attenuation at Ku-band. Exceedance probabilities of cloud and rain attenuation have been compared.  相似文献   

3.
We report the first results of ground-based millimeter-wave measurements of 183 GHz atmospheric water vapor spectra from Atacama highland (4800 m alt.), Chile. The measurements were carried out in December 2005 by using a spectroscopic radiometer equipped with a superconductive heterodyne receiver. A conspicuous H2O spectrum at 183 GHz was detected with an integration time of only 1.5 min, and this is the first high frequency-resolution H2O spectrum at 183 GHz obtained in the southern subtropical region. The vertical profile of H2O volume mixing ratio between 40 and 64 km were retrieved from the spectrum by using the modified optimal estimation method.  相似文献   

4.
An SSM/I algorithm is developed for measuring cloud liquid water of raining and non-raining clouds. Cloud ice water corresponding to precipitation sized ice particles is obtained from the SSM/I scattering index which is calibrated against radar- derived ice water content. Smaller ice particles in upper level clouds are detected using scattering index based on SSM/T2 183±3 and 183±1 GHz channels which allow for removing water vapor emission. It is shown that SSM/I derived cloud liquid water distribution agrees well with GCM simulations, particularly in tropical latitudes.  相似文献   

5.
Laboratory characterization of dielectric properties of terrestrial analogues of lunar soil (JSC-1A) and comparison with lunar samples returned from various Apollo missions is made at different as well as normalized bulk density. Here measurements of dielectric constants and losses were made at four microwave frequencies such as 1.7 GHz, 2.5 GHz, 6.6 GHz and 31.6 GHz. Complex permittivity of lunar simulant was measured at temperature ranging from −190 °C to + 200 °C using Wave-Guide cell method. Comparison of permittivity of JSC-1A with Apollo sample also has been done at similar microwave frequencies. The investigations reveal that dielectric constant and loss factor of terrestrial analogues of lunar soil are temperature dependent. As temperature is gradually increased both these parameter (storage factor and loss factor) also gradually increases. These temperatures were chosen because the Moon undergoes at that extremes level of temperature. It is scorching heat at 110 °C during the day and freezing cold at −180 °C during night. The measured value of ε can be useful for designing passive as well as active sensors.  相似文献   

6.
Radish (Raphanus sativus), lettuce (Latuca sativa), and wheat (Triticum aestivum) plants were grown at either 98 kPa (ambient) or 33 kPa atmospheric pressure with constant 21 kPa oxygen and 0.12 kPa carbon dioxide in atmospherically closed pressure chambers. All plants were grown rockwool using recirculating hydroponics with a complete nutrient solution. At 20 days after planting, chamber pressures were pumped down as rapidly as possible, reaching 5 kPa after about 5 min and ∼1.5 kPa after about 10 min. The plants were held at 1.5 kPa for 30 min and then pressures were restored to their original settings. Temperature (22 °C) and humidity (65% RH) controls were engaged throughout the depressurization, although temperatures dropped to near 16 °C for a brief period. CO2 and O2 were not detectable at the low pressure, suggesting that most of the 1.5 kPa atmosphere consisted of water vapor. Following re-pressurization, plants were grown for another 7 days at the original pressures and then harvested. The lettuce, radish, and wheat plants showed no visible effects from the rapid decompression, and there were no differences in fresh or dry mass when compared to control plants maintained continuously at 33 or 98 kPa. But radish storage root fresh mass and lettuce head fresh and dry masses were less at 33 kPa compared to 98 kPa for both the controls and decompression treatment. The results suggest that plants are extremely resilient to rapid decompression, provided they do not freeze (from evaporative cooling) or desiccate. The water of the hydroponic system was below the boiling pressure during these tests and this may have protected the plants by preventing pressures from dropping below 1.5 kPa and maintaining humidity near 1.5 kPa. Further testing is needed to determine how long plants can withstand such low pressure, but the results suggest there are at least 30 min to respond to catastrophic pressure losses in a plant production chamber that might be used for life support in space.  相似文献   

7.
The 0 °C isotherm height is an important parameter for prediction of rain attenuation of microwave and millimeter wave for Earth-space communication. The variations of 0 °C isotherm heights for two monsoon seasons have been studied based on an analysis of radiosonde over three stations. The exceedence probability statistics of rain height are compared between the two seasons. The results on the 0 °C isotherm height can be utilized for the estimation of attenuation of microwave and millimeter wave due to rain over Earth-space paths. Attenuations of radio wave due to rain at frequencies above 10 GHz and above have also been estimated using the 0 °C isotherm height so derived.  相似文献   

8.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

9.
10.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

11.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   

12.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

13.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

14.
The point source list of the Wilkinson Microwave Anisotropy Probe (WMAP) is a uniform, all-sky catalogue of bright sources with flux density measurements at high (up to 94 GHz) radio frequencies. We investigated the five-year WMAP list to compile a new catalogue of bright and compact extragalactic radio sources to be potentially studied with Very Long Baseline Interferometry at millimeter wavelengths (mm-VLBI) and Space VLBI (SVLBI). After comparing the WMAP data with the existing mm-VLBI catalogues, we sorted out the yet unexplored sources. Using the 41, 61 and 94 GHz WMAP flux densities, we calculated the spectral indices. By collecting optical identifications, lower-frequency radio flux densities and VLBI images from the literature, we created a list of objects which have not been investigated with VLBI at 86 GHz before. With total flux density at least 1 Jy and declination above −40°, we found 37 suitable new targets. It is a nearly 25% addition to the known mm-VLBI sources. Such objects are also potentially useful as phase-reference calibrators for the future Japanese SVLBI mission ASTRO-G at its highest observing frequency (43 GHz). The phase-referencing capability of ASTRO-G would allow long integrations and hence better sensitivity for observing faint target sources close to suitable phase calibrators in the sky.  相似文献   

15.
The new remote sensing experiment CRISTA-NF (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers) successfully participated in the SCOUT-O3 Tropical Aircraft Campaign in November and December 2005. CRISTA-NF operated aboard the high-altitude research aircraft M-55 Geophysica. Mid-infrared spectra (4–15 μm) were measured in the limb sounding geometry with high spatial resolution (250 m vertical sampling, 5–15 km along track sampling). Measurements were carried out during transfer flights between Oberpfaffenhofen, Germany, and Darwin, Australia, as well as during several local flights near Darwin. Water vapor volume mixing ratios in the upper troposphere and lower stratosphere were derived from the CRISTA-NF radiance measurements by utilizing a rapid radiative transfer forward model and the optimal estimation retrieval approach. CRISTA-NF water vapor measurements below the hygropause have a total retrieval error of 15–40% (i.e. root mean square of accuracy and precision). The systematic terms are dominating in the retrieval error budget. The contributions of a priori information to the retrieval results are less than 5–10%. The vertical resolution of the observations is about 250–500 m when permitted by instrument sampling. In this paper we present first results for three transfer flights of the campaign. Being generally in good agreement with corresponding ECMWF operational analyzes, the CRISTA-NF measurements show significantly higher variability and local structures in the upper tropospheric water vapor distributions.  相似文献   

16.
Water vapour measurements during the second mission of the CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument are presented in the altitude regime 8–20 km. Mixing ratios are shown on isentropic surfaces (300–500 K) as global zonal means and as averages in 60° longitude sectors. Transports are indicated to occur preferentially on isentropic surfaces in the northern hemisphere, but not in the tropics and in the south. The hygropause is found shifted away from the equator towards the winter hemisphere. The amount of shift is longitude dependent and can be as great as 20–30°. The water content of the hygropause area shows considerable zonal asymmetries.  相似文献   

17.
The microstructure of rain has been studied with observations using a vertical looking Micro Rain Radar (MRR) at Ahmedabad (23.06°N, 72.62°E), a tropical location in the Indian region. The rain height, derived from the bright band signature of melting layer of radar reflectivity profile, is found to be variable between the heights 4600 m and 5200 m. The change in the nature of rain, classified on the basis of radar reflectivity, is also observed through the MRR. It has been found that there are three types of rain, namely, convective, mixed and stratiform rain, prevailing with different vertical rain microstructures, such as, Drop Size Distribution (DSD), mean drop size, rain rate, liquid water content and average fall speed of the drops at different heights. It is observed that the vertical DSD profile is more inhomogeneous for mixed and stratiform type rain than for convective type rain. It is also found that the large number of drops of size <0.5 mm is present in convective rain whereas in stratiform rain, drops concentration is appreciable up to 1 mm. A comparison of measurements taken by ground based Disdrometer and that from the 200 m level obtained from MRR shows good agreement for rain rate and DSD at smaller rain rate values. The results may be useful for understanding rain structures over this region.  相似文献   

18.
In this study, 30 storm sudden commencement (SSC) events during the period 2001–2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20–30 m/s and 63% of the events have ΔH peak in the range 80–100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00–12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis were verified using the JULIA radar observed E × B drift velocity for 3 selected events. Root Mean Square (RMS) error analysis carried out for each case suggest that polynomial regression (order 3) analysis provides a better agreement with the observations from among the linear, polynomial (order 2 and 3) analysis.  相似文献   

19.
The cosmic noise absorption is presented in terms of two-dimensional images obtained from the imaging riometers operated at the Southern Space Observatory (geographic coordinate: 29.4° S, 53.1° W), in São Martinho da Serra, Brazil, Concepcion (geographic coordinate: 36.5° S, 73.0° W) and Punta Arenas (geographic coordinate: 53.0° S, 70.5° W) in Chile, which belong to the South American Riometer Network and are located at the central and periphery regions of the South American Magnetic Anomaly. Correlations are performed between the maximum cosmic noise absorption observed at these stations and the energetic electron flux in two energy channels (>30 and >300 keV) and the proton flux in three energy channels (80–240, 800–2500 and >6900 keV) as measured by the Medium Energy Proton and Electron Detector, during a moderate geomagnetic storm that occurred on September 3, 2008. The results show high correlations between the cosmic noise absorption detected at São Martinho da Serra and the flux of protons with energy between 80 and 240 keV, and the flux of electrons with energies higher than 300 keV, while an additional ionization at Concepcion was correlated with electrons of energies higher than 30 keV. The cosmic noise absorption detected at Punta Arenas was probably caused by the increase of the protons flux with energy between 80 and 240 keV.  相似文献   

20.
This paper describes a microwave limb technique for measuring Doppler wind in the Earth’s mesosphere. The research algorithm has been applied to Aura Microwave Limb Sounder (MLS) 118.75 GHz measurements where the O2 Zeeman lines are resolved by a digital autocorrelation spectrometer. A precision of ∼17 m/s for the line-of-sight (LOS) wind is achieved at 80–92 km, which corresponds to radiometric noise during 1/6 s integration time. The LOS winds from Aura MLS are mostly in the meridional direction at low- and mid-latitudes with vertical resolution of ∼8 km. This microwave Doppler technique has potential to obtain useful winds down to ∼40 km of the Earth’s atmosphere if measurements from other MLS frequencies (near H2O, O3, and CO lines) are used. Initial analyses show that the MLS winds from the 118.75 GHz measurements agree well with the TIDI (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer) winds for the perturbations induced by a strong quasi 2-day wave (QTDW) in January 2005. Time series of MLS winds reveal many interesting climatological and planetary wave features, including the diurnal, semidiurnal tides, and the QTDW. Interactions between the tides and the QTDW are clearly evident, indicating possible large tidal structural changes after the QTDW events dissipate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号